MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divex Structured version   Unicode version

Theorem ply1divex 20059
Description: Lemma for ply1divalg 20060: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divex.o  |-  .1.  =  ( 1r `  R )
ply1divex.k  |-  K  =  ( Base `  R
)
ply1divex.u  |-  .x.  =  ( .r `  R )
ply1divex.i  |-  ( ph  ->  I  e.  K )
ply1divex.g3  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
Assertion
Ref Expression
ply1divex  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Distinct variable groups:    .0. , q    F, q    I, q    P, q    R, q    .- , q    B, q    .xb , q    D, q    G, q    ph, q    .x. , q
Allowed substitution hints:    .1. ( q)    K( q)

Proof of Theorem ply1divex
Dummy variables  d 
f  r  a  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5728 . . . . 5  |-  ( F  =  .0.  ->  ( D `  F )  =  ( D `  .0.  ) )
21breq1d 4222 . . . 4  |-  ( F  =  .0.  ->  (
( D `  F
)  <  ( ( D `  G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  d ) ) )
32rexbidv 2726 . . 3  |-  ( F  =  .0.  ->  ( E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d )  <->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) ) )
4 nnssnn0 10224 . . . . 5  |-  NN  C_  NN0
5 ply1divalg.r1 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
65adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  R  e. 
Ring )
7 ply1divalg.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  B )
87adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  e.  B )
9 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  =/= 
.0.  )
10 ply1divalg.d . . . . . . . . . 10  |-  D  =  ( deg1  `  R )
11 ply1divalg.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
12 ply1divalg.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
13 ply1divalg.b . . . . . . . . . 10  |-  B  =  ( Base `  P
)
1410, 11, 12, 13deg1nn0cl 20011 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
156, 8, 9, 14syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e. 
NN0 )
1615nn0red 10275 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e.  RR )
17 ply1divalg.g1 . . . . . . . . . 10  |-  ( ph  ->  G  e.  B )
18 ply1divalg.g2 . . . . . . . . . 10  |-  ( ph  ->  G  =/=  .0.  )
1910, 11, 12, 13deg1nn0cl 20011 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  G  =/= 
.0.  )  ->  ( D `  G )  e.  NN0 )
205, 17, 18, 19syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
2120nn0red 10275 . . . . . . . 8  |-  ( ph  ->  ( D `  G
)  e.  RR )
2221adantr 452 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 G )  e.  RR )
2316, 22resubcld 9465 . . . . . 6  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( ( D `  F )  -  ( D `  G ) )  e.  RR )
24 arch 10218 . . . . . 6  |-  ( ( ( D `  F
)  -  ( D `
 G ) )  e.  RR  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2523, 24syl 16 . . . . 5  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
26 ssrexv 3408 . . . . 5  |-  ( NN  C_  NN0  ->  ( E. d  e.  NN  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d ) )
274, 25, 26mpsyl 61 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2816adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  F )  e.  RR )
2921ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  G )  e.  RR )
30 nn0re 10230 . . . . . . . 8  |-  ( d  e.  NN0  ->  d  e.  RR )
3130adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  d  e.  RR )
3228, 29, 31ltsubadd2d 9624 . . . . . 6  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3332biimpd 199 . . . . 5  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  ->  ( D `  F )  <  ( ( D `
 G )  +  d ) ) )
3433reximdva 2818 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( E. d  e.  NN0  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3527, 34mpd 15 . . 3  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) )
36 0nn0 10236 . . . 4  |-  0  e.  NN0
3710, 11, 12deg1z 20010 . . . . . 6  |-  ( R  e.  Ring  ->  ( D `
 .0.  )  = 
-oo )
385, 37syl 16 . . . . 5  |-  ( ph  ->  ( D `  .0.  )  =  -oo )
39 0re 9091 . . . . . . 7  |-  0  e.  RR
40 readdcl 9073 . . . . . . 7  |-  ( ( ( D `  G
)  e.  RR  /\  0  e.  RR )  ->  ( ( D `  G )  +  0 )  e.  RR )
4121, 39, 40sylancl 644 . . . . . 6  |-  ( ph  ->  ( ( D `  G )  +  0 )  e.  RR )
42 mnflt 10722 . . . . . 6  |-  ( ( ( D `  G
)  +  0 )  e.  RR  ->  -oo  <  ( ( D `  G
)  +  0 ) )
4341, 42syl 16 . . . . 5  |-  ( ph  ->  -oo  <  ( ( D `  G )  +  0 ) )
4438, 43eqbrtrd 4232 . . . 4  |-  ( ph  ->  ( D `  .0.  )  <  ( ( D `
 G )  +  0 ) )
45 oveq2 6089 . . . . . 6  |-  ( d  =  0  ->  (
( D `  G
)  +  d )  =  ( ( D `
 G )  +  0 ) )
4645breq2d 4224 . . . . 5  |-  ( d  =  0  ->  (
( D `  .0.  )  <  ( ( D `
 G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  0 ) ) )
4746rspcev 3052 . . . 4  |-  ( ( 0  e.  NN0  /\  ( D `  .0.  )  <  ( ( D `  G )  +  0 ) )  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
4836, 44, 47sylancr 645 . . 3  |-  ( ph  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
493, 35, 48pm2.61ne 2679 . 2  |-  ( ph  ->  E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d ) )
507adantr 452 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  F  e.  B )
51 oveq2 6089 . . . . . . . . . 10  |-  ( a  =  0  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  0 ) )
5251breq2d 4224 . . . . . . . . 9  |-  ( a  =  0  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  0 ) ) )
5352imbi1d 309 . . . . . . . 8  |-  ( a  =  0  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5453ralbidv 2725 . . . . . . 7  |-  ( a  =  0  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5554imbi2d 308 . . . . . 6  |-  ( a  =  0  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
56 oveq2 6089 . . . . . . . . . 10  |-  ( a  =  d  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  d ) )
5756breq2d 4224 . . . . . . . . 9  |-  ( a  =  d  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  d ) ) )
5857imbi1d 309 . . . . . . . 8  |-  ( a  =  d  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5958ralbidv 2725 . . . . . . 7  |-  ( a  =  d  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6059imbi2d 308 . . . . . 6  |-  ( a  =  d  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
61 oveq2 6089 . . . . . . . . . 10  |-  ( a  =  ( d  +  1 )  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  ( d  +  1 ) ) )
6261breq2d 4224 . . . . . . . . 9  |-  ( a  =  ( d  +  1 )  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
6362imbi1d 309 . . . . . . . 8  |-  ( a  =  ( d  +  1 )  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6463ralbidv 2725 . . . . . . 7  |-  ( a  =  ( d  +  1 )  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6564imbi2d 308 . . . . . 6  |-  ( a  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
6611ply1rng 16642 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  P  e. 
Ring )
675, 66syl 16 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Ring )
6813, 12rng0cl 15685 . . . . . . . . . . 11  |-  ( P  e.  Ring  ->  .0.  e.  B )
6967, 68syl 16 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
7069ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  .0.  e.  B )
71 ply1divalg.t . . . . . . . . . . . . . . . . 17  |-  .xb  =  ( .r `  P )
7213, 71, 12rngrz 15701 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Ring  /\  G  e.  B )  ->  ( G  .xb  .0.  )  =  .0.  )
7367, 17, 72syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  .xb  .0.  )  =  .0.  )
7473oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( f  .-  ( G  .xb  .0.  ) )  =  ( f  .-  .0.  ) )
7574adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  ( G  .xb 
.0.  ) )  =  ( f  .-  .0.  ) )
76 rnggrp 15669 . . . . . . . . . . . . . . 15  |-  ( P  e.  Ring  ->  P  e. 
Grp )
7767, 76syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Grp )
78 ply1divalg.m . . . . . . . . . . . . . . 15  |-  .-  =  ( -g `  P )
7913, 12, 78grpsubid1 14874 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Grp  /\  f  e.  B )  ->  ( f  .-  .0.  )  =  f )
8077, 79sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  .0.  )  =  f )
8175, 80eqtr2d 2469 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  f  =  ( f  .-  ( G  .xb  .0.  )
) )
8281fveq2d 5732 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  ( D `  f )  =  ( D `  ( f  .-  ( G  .xb  .0.  ) ) ) )
8320nn0cnd 10276 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  G
)  e.  CC )
8483addid1d 9266 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( D `  G )  +  0 )  =  ( D `
 G ) )
8584adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  G
)  +  0 )  =  ( D `  G ) )
8682, 85breq12d 4225 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
8786biimpa 471 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )
88 oveq2 6089 . . . . . . . . . . . . 13  |-  ( q  =  .0.  ->  ( G  .xb  q )  =  ( G  .xb  .0.  ) )
8988oveq2d 6097 . . . . . . . . . . . 12  |-  ( q  =  .0.  ->  (
f  .-  ( G  .xb  q ) )  =  ( f  .-  ( G  .xb  .0.  ) ) )
9089fveq2d 5732 . . . . . . . . . . 11  |-  ( q  =  .0.  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  (
f  .-  ( G  .xb 
.0.  ) ) ) )
9190breq1d 4222 . . . . . . . . . 10  |-  ( q  =  .0.  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
9291rspcev 3052 . . . . . . . . 9  |-  ( (  .0.  e.  B  /\  ( D `  ( f 
.-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9370, 87, 92syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9493ex 424 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
9594ralrimiva 2789 . . . . . 6  |-  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
96 nn0addcl 10255 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D `  G
)  e.  NN0  /\  d  e.  NN0 )  -> 
( ( D `  G )  +  d )  e.  NN0 )
9720, 96sylan 458 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  d )  e. 
NN0 )
9897adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( D `
 G )  +  d )  e.  NN0 )
995ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  R  e.  Ring )
100 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  g  e.  B
)
10110, 11, 13deg1cl 20006 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  e.  B  ->  ( D `  g )  e.  ( NN0  u.  {  -oo } ) )
102101adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  g )  e.  ( NN0  u.  {  -oo } ) )
10320ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  NN0 )
104 peano2nn0 10260 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
105104ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
d  +  1 )  e.  NN0 )
106103, 105nn0addcld 10278 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  NN0 )
107106nn0zd 10373 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  ZZ )
108 degltlem1 19995 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D `  g
)  e.  ( NN0 
u.  {  -oo } )  /\  ( ( D `
 G )  +  ( d  +  1 ) )  e.  ZZ )  ->  ( ( D `
 g )  < 
( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
109102, 107, 108syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
110109biimpd 199 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  -> 
( D `  g
)  <_  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 ) ) )
111110impr 603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) )
11220adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  NN0 )
113112nn0cnd 10276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  CC )
114 nn0cn 10231 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  NN0  ->  d  e.  CC )
115114adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  d  e.  CC )
116 peano2cn 9238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  e.  CC  ->  (
d  +  1 )  e.  CC )
117115, 116syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( d  +  1 )  e.  CC )
118 ax-1cn 9048 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  1  e.  CC )
120113, 117, 119addsubassd 9431 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  ( ( d  +  1 )  -  1 ) ) )
121 pncan 9311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  e.  CC  /\  1  e.  CC )  ->  ( ( d  +  1 )  -  1 )  =  d )
122115, 118, 121sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
d  +  1 )  -  1 )  =  d )
123122oveq2d 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  ( ( d  +  1 )  - 
1 ) )  =  ( ( D `  G )  +  d ) )
124120, 123eqtrd 2468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  d ) )
125124adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( ( D `  G )  +  ( d  +  1 ) )  - 
1 )  =  ( ( D `  G
)  +  d ) )
126111, 125breqtrd 4236 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( D `  G
)  +  d ) )
12767ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Ring )
12817ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  G  e.  B )
1295ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  R  e.  Ring )
130 ply1divex.i . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  I  e.  K )
131130ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  I  e.  K )
132 eqid 2436 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (coe1 `  g
)  =  (coe1 `  g
)
133 ply1divex.k . . . . . . . . . . . . . . . . . . . . . . 23  |-  K  =  ( Base `  R
)
134132, 13, 11, 133coe1f 16609 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  e.  B  ->  (coe1 `  g ) : NN0 --> K )
135134adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  g ) : NN0 --> K )
136 simplr 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  NN0 )
137103, 136nn0addcld 10278 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  e.  NN0 )
138135, 137ffvelrnd 5871 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)
139 ply1divex.u . . . . . . . . . . . . . . . . . . . . 21  |-  .x.  =  ( .r `  R )
140133, 139rngcl 15677 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  I  e.  K  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  e.  K )
141129, 131, 138, 140syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K
)
142 eqid 2436 . . . . . . . . . . . . . . . . . . . 20  |-  (var1 `  R
)  =  (var1 `  R
)
143 eqid 2436 . . . . . . . . . . . . . . . . . . . 20  |-  ( .s
`  P )  =  ( .s `  P
)
144 eqid 2436 . . . . . . . . . . . . . . . . . . . 20  |-  (mulGrp `  P )  =  (mulGrp `  P )
145 eqid 2436 . . . . . . . . . . . . . . . . . . . 20  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
146133, 11, 142, 143, 144, 145, 13ply1tmcl 16664 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
147129, 141, 136, 146syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )
14813, 71rngcl 15677 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
149127, 128, 147, 148syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
150149adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
151103nn0red 10275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  RR )
152151leidd 9593 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  <_  ( D `  G
) )
15310, 133, 11, 142, 143, 144, 145deg1tmle 20040 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( D `  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  <_  d )
154129, 141, 136, 153syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  <_  d )
15511, 10, 129, 13, 71, 128, 147, 103, 136, 152, 154deg1mulle2 20032 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  <_  (
( D `  G
)  +  d ) )
156155adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  <_  ( ( D `  G )  +  d ) )
157 eqid 2436 . . . . . . . . . . . . . . . 16  |-  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )
158 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  R )  =  ( 0g `  R
)
159158, 133, 11, 142, 143, 144, 145, 13, 71, 139, 128, 129, 141, 136, 103coe1tmmul2fv 16670 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
160103nn0cnd 10276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  CC )
161114ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  CC )
162160, 161addcomd 9268 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  =  ( d  +  ( D `  G
) ) )
163162fveq2d 5732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) )  =  ( (coe1 `  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) ) )
164 ply1divex.g3 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
165164oveq1d 6096 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( (coe1 `  G ) `  ( D `  G )
)  .x.  I )  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
166165ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
167 eqid 2436 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (coe1 `  G
)  =  (coe1 `  G
)
168167, 13, 11, 133coe1f 16609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> K )
16917, 168syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  (coe1 `  G ) : NN0 --> K )
170169ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  G ) : NN0 --> K )
171170, 103ffvelrnd 5871 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  G ) `  ( D `  G ) )  e.  K )
172133, 139rngass 15680 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
( (coe1 `  G ) `  ( D `  G ) )  e.  K  /\  I  e.  K  /\  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
) )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
173129, 171, 131, 138, 172syl13anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
174 ply1divex.o . . . . . . . . . . . . . . . . . . . . 21  |-  .1.  =  ( 1r `  R )
175133, 139, 174rnglidm 15687 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  (  .1.  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )
176129, 138, 175syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (  .1.  .x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )
177166, 173, 1763eqtr3rd 2477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
178159, 163, 1773eqtr4rd 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) ) )
179178adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) `  ( ( D `  G )  +  d ) ) )
18010, 11, 13, 78, 98, 99, 100, 126, 150, 156, 132, 157, 179deg1sublt 20033 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) )
181180adantlrr 702 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( D `  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d ) )
18277ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Grp )
183 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  g  e.  B )
18413, 78grpsubcl 14869 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Grp  /\  g  e.  B  /\  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
185182, 183, 149, 184syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  e.  B
)
186185adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
187186adantlrr 702 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
188 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
189 fveq2 5728 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  f )  =  ( D `  ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
190189breq1d 4222 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  f )  <  ( ( D `  G )  +  d )  <->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) ) )
191 oveq1 6088 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( f  .-  ( G  .xb  q
) )  =  ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )
192191fveq2d 5732 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  ( f  .-  ( G  .xb  q ) ) )  =  ( D `
 ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) ) )
193192breq1d 4222 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
194193rexbidv 2726 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
195190, 194imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( (
( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  ( g  .-  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) ) )
196195rspcva 3050 . . . . . . . . . . . . . . 15  |-  ( ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
197187, 188, 196syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
198181, 197mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) )
19967ad3antrrr 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Ring )
200 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  q  e.  B )
201147adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
202 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( +g  `  P )  =  ( +g  `  P )
20313, 202rngacl 15691 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  q  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
204199, 200, 201, 203syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20577ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Grp )
206 simplr 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  g  e.  B )
207149adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20817ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  G  e.  B )
20913, 71rngcl 15677 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G  .xb  q )  e.  B )
210199, 208, 200, 209syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  q )  e.  B
)
21113, 202, 78grpsubsub4 14881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  Grp  /\  ( g  e.  B  /\  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B  /\  ( G  .xb  q )  e.  B ) )  ->  ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
212205, 206, 207, 210, 211syl13anc 1186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
21313, 202, 71rngdi 15682 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  ( G  e.  B  /\  q  e.  B  /\  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B ) )  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
214199, 208, 200, 201, 213syl13anc 1186 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
215214oveq2d 6097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  =  ( g  .-  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
216212, 215eqtr4d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
217216fveq2d 5732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
218217breq1d 4222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
219218biimpd 199 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  -> 
( D `  (
g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) ) )
220 oveq2 6089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( G  .xb  r )  =  ( G  .xb  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
221220oveq2d 6097 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( g  .-  ( G  .xb  r
) )  =  ( g  .-  ( G 
.xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
222221fveq2d 5732 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  r ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
223222breq1d 4222 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( ( D `  ( g  .-  ( G  .xb  r
) ) )  < 
( D `  G
)  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
224223rspcev 3052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B  /\  ( D `  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) )
225204, 219, 224ee12an 1372 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
226225rexlimdva 2830 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
227226adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
228227adantlrr 702 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
229198, 228mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )
230229expr 599 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
231230ralrimiva 2789 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. g  e.  B  ( ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
232 fveq2 5728 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( D `  g )  =  ( D `  f ) )
233232breq1d 4222 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
234 oveq1 6088 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
g  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  r ) ) )
235234fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  ( D `  ( g  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  r ) ) ) )
236235breq1d 4222 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( D `  (
g  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
237236rexbidv 2726 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. r  e.  B  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
238 oveq2 6089 . . . . . . . . . . . . . . . . 17  |-  ( r  =  q  ->  ( G  .xb  r )  =  ( G  .xb  q
) )
239238oveq2d 6097 . . . . . . . . . . . . . . . 16  |-  ( r  =  q  ->  (
f  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  q ) ) )
240239fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( r  =  q  ->  ( D `  ( f  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  q ) ) ) )
241240breq1d 4222 . . . . . . . . . . . . . 14  |-  ( r  =  q  ->  (
( D `  (
f  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
242241cbvrexv 2933 . . . . . . . . . . . . 13  |-  ( E. r  e.  B  ( D `  ( f 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
243237, 242syl6bb 253 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
244233, 243imbi12d 312 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( ( D `  g )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
245244cbvralv 2932 . . . . . . . . . 10  |-  ( A. g  e.  B  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
246231, 245sylib 189 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
247246exp32 589 . . . . . . . 8  |-  ( ph  ->  ( d  e.  NN0  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
248247com12 29 . . . . . . 7  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
249248a2d 24 . . . . . 6  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
25055, 60, 65, 60, 95, 249nn0ind 10366 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )
251250impcom 420 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
252 fveq2 5728 . . . . . . 7  |-  ( f  =  F  ->  ( D `  f )  =  ( D `  F ) )
253252breq1d 4222 . . . . . 6  |-  ( f  =  F  ->  (
( D `  f
)  <  ( ( D `  G )  +  d )  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
254 oveq1 6088 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  .-  ( G  .xb  q ) )  =  ( F  .-  ( G  .xb  q ) ) )
255254fveq2d 5732 . . . . . . . 8  |-  ( f  =  F  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  ( F  .-  ( G  .xb  q ) ) ) )
256255breq1d 4222 . . . . . . 7  |-  ( f  =  F  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
257256rexbidv 2726 . . . . . 6  |-  ( f  =  F  ->  ( E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
258253, 257imbi12d 312 . . . . 5  |-  ( f  =  F  ->  (
( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
259258rspcva 3050 . . . 4  |-  ( ( F  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 F )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
26050, 251, 259syl2anc 643 . . 3  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
261260rexlimdva 2830 . 2  |-  ( ph  ->  ( E. d  e. 
NN0  ( D `  F )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
26249, 261mpd 15 1  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706    u. cun 3318    C_ wss 3320   {csn 3814   class class class wbr 4212   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    -oocmnf 9118    < clt 9120    <_ cle 9121    - cmin 9291   NNcn 10000   NN0cn0 10221   ZZcz 10282   Basecbs 13469   +g cplusg 13529   .rcmulr 13530   .scvsca 13533   0gc0g 13723   Grpcgrp 14685   -gcsg 14688  .gcmg 14689  mulGrpcmgp 15648   Ringcrg 15660   1rcur 15662  var1cv1 16570  Poly1cpl1 16571  coe1cco1 16574   deg1 cdg1 19977
This theorem is referenced by:  ply1divalg  20060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-gsum 13728  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-ghm 15004  df-cntz 15116  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-subrg 15866  df-lmod 15952  df-lss 16009  df-rlreg 16343  df-psr 16417  df-mvr 16418  df-mpl 16419  df-opsr 16425  df-psr1 16576  df-vr1 16577  df-ply1 16578  df-coe1 16581  df-cnfld 16704  df-mdeg 19978  df-deg1 19979
  Copyright terms: Public domain W3C validator