MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1lpir Structured version   Unicode version

Theorem ply1lpir 20093
Description: The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
ply1lpir.p  |-  P  =  (Poly1 `  R )
Assertion
Ref Expression
ply1lpir  |-  ( R  e.  DivRing  ->  P  e. LPIR )

Proof of Theorem ply1lpir
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngrng 15834 . . 3  |-  ( R  e.  DivRing  ->  R  e.  Ring )
2 ply1lpir.p . . . 4  |-  P  =  (Poly1 `  R )
32ply1rng 16634 . . 3  |-  ( R  e.  Ring  ->  P  e. 
Ring )
41, 3syl 16 . 2  |-  ( R  e.  DivRing  ->  P  e.  Ring )
5 eqid 2435 . . . . . . . . 9  |-  ( Base `  P )  =  (
Base `  P )
6 eqid 2435 . . . . . . . . 9  |-  (LIdeal `  P )  =  (LIdeal `  P )
75, 6lidlss 16272 . . . . . . . 8  |-  ( i  e.  (LIdeal `  P
)  ->  i  C_  ( Base `  P )
)
87adantl 453 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  i  C_  ( Base `  P )
)
9 eqid 2435 . . . . . . . 8  |-  (idlGen1p `  R
)  =  (idlGen1p `  R
)
102, 9, 6ig1pcl 20090 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  ( (idlGen1p `  R ) `  i
)  e.  i )
118, 10sseldd 3341 . . . . . 6  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  ( (idlGen1p `  R ) `  i
)  e.  ( Base `  P ) )
12 eqid 2435 . . . . . . 7  |-  (RSpan `  P )  =  (RSpan `  P )
132, 9, 6, 12ig1prsp 20092 . . . . . 6  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  i  =  ( (RSpan `  P ) `  { ( (idlGen1p `  R
) `  i ) } ) )
14 sneq 3817 . . . . . . . . 9  |-  ( j  =  ( (idlGen1p `  R
) `  i )  ->  { j }  =  { ( (idlGen1p `  R
) `  i ) } )
1514fveq2d 5724 . . . . . . . 8  |-  ( j  =  ( (idlGen1p `  R
) `  i )  ->  ( (RSpan `  P
) `  { j } )  =  ( (RSpan `  P ) `  { ( (idlGen1p `  R
) `  i ) } ) )
1615eqeq2d 2446 . . . . . . 7  |-  ( j  =  ( (idlGen1p `  R
) `  i )  ->  ( i  =  ( (RSpan `  P ) `  { j } )  <-> 
i  =  ( (RSpan `  P ) `  {
( (idlGen1p `
 R ) `  i ) } ) ) )
1716rspcev 3044 . . . . . 6  |-  ( ( ( (idlGen1p `
 R ) `  i )  e.  (
Base `  P )  /\  i  =  (
(RSpan `  P ) `  { ( (idlGen1p `  R
) `  i ) } ) )  ->  E. j  e.  ( Base `  P ) i  =  ( (RSpan `  P ) `  {
j } ) )
1811, 13, 17syl2anc 643 . . . . 5  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  E. j  e.  ( Base `  P
) i  =  ( (RSpan `  P ) `  { j } ) )
194adantr 452 . . . . . 6  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  P  e.  Ring )
20 eqid 2435 . . . . . . 7  |-  (LPIdeal `  P
)  =  (LPIdeal `  P
)
2120, 12, 5islpidl 16309 . . . . . 6  |-  ( P  e.  Ring  ->  ( i  e.  (LPIdeal `  P
)  <->  E. j  e.  (
Base `  P )
i  =  ( (RSpan `  P ) `  {
j } ) ) )
2219, 21syl 16 . . . . 5  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  ( i  e.  (LPIdeal `  P )  <->  E. j  e.  ( Base `  P ) i  =  ( (RSpan `  P
) `  { j } ) ) )
2318, 22mpbird 224 . . . 4  |-  ( ( R  e.  DivRing  /\  i  e.  (LIdeal `  P )
)  ->  i  e.  (LPIdeal `  P ) )
2423ex 424 . . 3  |-  ( R  e.  DivRing  ->  ( i  e.  (LIdeal `  P )  ->  i  e.  (LPIdeal `  P
) ) )
2524ssrdv 3346 . 2  |-  ( R  e.  DivRing  ->  (LIdeal `  P )  C_  (LPIdeal `  P )
)
2620, 6islpir2 16314 . 2  |-  ( P  e. LPIR 
<->  ( P  e.  Ring  /\  (LIdeal `  P )  C_  (LPIdeal `  P )
) )
274, 25, 26sylanbrc 646 1  |-  ( R  e.  DivRing  ->  P  e. LPIR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312   {csn 3806   ` cfv 5446   Basecbs 13461   Ringcrg 15652   DivRingcdr 15827  LIdealclidl 16234  RSpancrsp 16235  LPIdealclpidl 16304  LPIRclpir 16305  Poly1cpl1 16563  idlGen1pcig1p 20044
This theorem is referenced by:  ply1pid  20094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-0g 13719  df-gsum 13720  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cntz 15108  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-drng 15829  df-subrg 15858  df-lmod 15944  df-lss 16001  df-lsp 16040  df-sra 16236  df-rgmod 16237  df-lidl 16238  df-rsp 16239  df-lpidl 16306  df-lpir 16307  df-rlreg 16335  df-ascl 16366  df-psr 16409  df-mvr 16410  df-mpl 16411  df-opsr 16417  df-psr1 16568  df-vr1 16569  df-ply1 16570  df-coe1 16573  df-cnfld 16696  df-mdeg 19970  df-deg1 19971  df-mon1 20045  df-uc1p 20046  df-q1p 20047  df-r1p 20048  df-ig1p 20049
  Copyright terms: Public domain W3C validator