MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1term Structured version   Unicode version

Theorem ply1term 20123
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
ply1term  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  F  e.  (Poly `  S )
)
Distinct variable groups:    z, A    z, N    z, S
Allowed substitution hint:    F( z)

Proof of Theorem ply1term
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ssel2 3343 . . . . 5  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  A  e.  CC )
213adant3 977 . . . 4  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  A  e.  CC )
3 simp3 959 . . . 4  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  N  e.  NN0 )
4 ply1term.1 . . . . 5  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
54ply1termlem 20122 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
62, 3, 5syl2anc 643 . . 3  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
7 simp1 957 . . . . 5  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  S  C_  CC )
8 0cn 9084 . . . . . . 7  |-  0  e.  CC
98a1i 11 . . . . . 6  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  0  e.  CC )
109snssd 3943 . . . . 5  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  { 0 }  C_  CC )
117, 10unssd 3523 . . . 4  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  ( S  u.  { 0 } )  C_  CC )
12 simpl2 961 . . . . . 6  |-  ( ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  A  e.  S
)
13 elun1 3514 . . . . . 6  |-  ( A  e.  S  ->  A  e.  ( S  u.  {
0 } ) )
1412, 13syl 16 . . . . 5  |-  ( ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  A  e.  ( S  u.  { 0 } ) )
15 ssun2 3511 . . . . . 6  |-  { 0 }  C_  ( S  u.  { 0 } )
16 c0ex 9085 . . . . . . 7  |-  0  e.  _V
1716snss 3926 . . . . . 6  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
1815, 17mpbir 201 . . . . 5  |-  0  e.  ( S  u.  {
0 } )
19 ifcl 3775 . . . . 5  |-  ( ( A  e.  ( S  u.  { 0 } )  /\  0  e.  ( S  u.  {
0 } ) )  ->  if ( k  =  N ,  A ,  0 )  e.  ( S  u.  {
0 } ) )
2014, 18, 19sylancl 644 . . . 4  |-  ( ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  if ( k  =  N ,  A ,  0 )  e.  ( S  u.  {
0 } ) )
2111, 3, 20elplyd 20121 . . 3  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )  e.  (Poly `  ( S  u.  {
0 } ) ) )
226, 21eqeltrd 2510 . 2  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  F  e.  (Poly `  ( S  u.  { 0 } ) ) )
23 plyun0 20116 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
2422, 23syl6eleq 2526 1  |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e. 
NN0 )  ->  F  e.  (Poly `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    u. cun 3318    C_ wss 3320   ifcif 3739   {csn 3814    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   CCcc 8988   0cc0 8990    x. cmul 8995   NN0cn0 10221   ...cfz 11043   ^cexp 11382   sum_csu 12479  Polycply 20103
This theorem is referenced by:  plypow  20124  plyconst  20125  coe1termlem  20176  dgrcolem2  20192  plydivlem4  20213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-ply 20107
  Copyright terms: Public domain W3C validator