![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ply1tmcl | Unicode version |
Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1tmcl.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ply1tmcl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ply1tmcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1tmcl.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ply1lmod 16609 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3ad2ant1 978 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | simp2 958 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1 | ply1rng 16605 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | ply1tmcl.n |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | rngmgp 15633 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 5, 7 | syl 16 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | 3ad2ant1 978 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | simp3 959 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | ply1tmcl.x |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | ply1tmcl.b |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 11, 1, 12 | vr1cl 16574 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | 3ad2ant1 978 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 6, 12 | mgpbas 15617 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | ply1tmcl.e |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | mulgnn0cl 14869 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 9, 10, 14, 17 | syl3anc 1184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 1 | ply1sca2 16611 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | ply1tmcl.m |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | df-base 13437 |
. . . 4
![]() ![]() ![]() ![]() | |
22 | ply1tmcl.k |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 21, 22 | strfvi 13470 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 12, 19, 20, 23 | lmodvscl 15930 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 3, 4, 18, 24 | syl3anc 1184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: coe1tm 16628 coe1tmmul2 16631 coe1tmmul 16632 deg1tmle 20001 deg1tm 20002 ply1divex 20020 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 ax-rep 4288 ax-sep 4298 ax-nul 4306 ax-pow 4345 ax-pr 4371 ax-un 4668 ax-inf2 7560 ax-cnex 9010 ax-resscn 9011 ax-1cn 9012 ax-icn 9013 ax-addcl 9014 ax-addrcl 9015 ax-mulcl 9016 ax-mulrcl 9017 ax-mulcom 9018 ax-addass 9019 ax-mulass 9020 ax-distr 9021 ax-i2m1 9022 ax-1ne0 9023 ax-1rid 9024 ax-rnegex 9025 ax-rrecex 9026 ax-cnre 9027 ax-pre-lttri 9028 ax-pre-lttrn 9029 ax-pre-ltadd 9030 ax-pre-mulgt0 9031 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ne 2577 df-nel 2578 df-ral 2679 df-rex 2680 df-reu 2681 df-rmo 2682 df-rab 2683 df-v 2926 df-sbc 3130 df-csb 3220 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-pss 3304 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-tp 3790 df-op 3791 df-uni 3984 df-int 4019 df-iun 4063 df-iin 4064 df-br 4181 df-opab 4235 df-mpt 4236 df-tr 4271 df-eprel 4462 df-id 4466 df-po 4471 df-so 4472 df-fr 4509 df-se 4510 df-we 4511 df-ord 4552 df-on 4553 df-lim 4554 df-suc 4555 df-om 4813 df-xp 4851 df-rel 4852 df-cnv 4853 df-co 4854 df-dm 4855 df-rn 4856 df-res 4857 df-ima 4858 df-iota 5385 df-fun 5423 df-fn 5424 df-f 5425 df-f1 5426 df-fo 5427 df-f1o 5428 df-fv 5429 df-isom 5430 df-ov 6051 df-oprab 6052 df-mpt2 6053 df-of 6272 df-ofr 6273 df-1st 6316 df-2nd 6317 df-riota 6516 df-recs 6600 df-rdg 6635 df-1o 6691 df-2o 6692 df-oadd 6695 df-er 6872 df-map 6987 df-pm 6988 df-ixp 7031 df-en 7077 df-dom 7078 df-sdom 7079 df-fin 7080 df-oi 7443 df-card 7790 df-pnf 9086 df-mnf 9087 df-xr 9088 df-ltxr 9089 df-le 9090 df-sub 9257 df-neg 9258 df-nn 9965 df-2 10022 df-3 10023 df-4 10024 df-5 10025 df-6 10026 df-7 10027 df-8 10028 df-9 10029 df-10 10030 df-n0 10186 df-z 10247 df-uz 10453 df-fz 11008 df-fzo 11099 df-seq 11287 df-hash 11582 df-struct 13434 df-ndx 13435 df-slot 13436 df-base 13437 df-sets 13438 df-ress 13439 df-plusg 13505 df-mulr 13506 df-sca 13508 df-vsca 13509 df-tset 13511 df-ple 13512 df-0g 13690 df-gsum 13691 df-mre 13774 df-mrc 13775 df-acs 13777 df-mnd 14653 df-mhm 14701 df-submnd 14702 df-grp 14775 df-minusg 14776 df-sbg 14777 df-mulg 14778 df-subg 14904 df-ghm 14967 df-cntz 15079 df-cmn 15377 df-abl 15378 df-mgp 15612 df-rng 15626 df-ur 15628 df-subrg 15829 df-lmod 15915 df-lss 15972 df-psr 16380 df-mvr 16381 df-mpl 16382 df-opsr 16388 df-psr1 16539 df-vr1 16540 df-ply1 16541 |
Copyright terms: Public domain | W3C validator |