MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyadd Structured version   Unicode version

Theorem plyadd 20141
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
Assertion
Ref Expression
plyadd  |-  ( ph  ->  ( F  o F  +  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, y, F    x, S, y    x, G, y    ph, x, y

Proof of Theorem plyadd
Dummy variables  k  m  n  z  a 
b  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 elply2 20120 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
32simprbi 452 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
41, 3syl 16 . 2  |-  ( ph  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
5 plyadd.2 . . 3  |-  ( ph  ->  G  e.  (Poly `  S ) )
6 elply2 20120 . . . 4  |-  ( G  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
76simprbi 452 . . 3  |-  ( G  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
85, 7syl 16 . 2  |-  ( ph  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
9 reeanv 2877 . . 3  |-  ( E. m  e.  NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  <-> 
( E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
10 reeanv 2877 . . . . 5  |-  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  <->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
11 simp1l 982 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ph )
1211, 1syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  e.  (Poly `  S ) )
1311, 5syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  e.  (Poly `  S ) )
14 plyadd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1511, 14sylan 459 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( m  e.  NN0  /\  n  e.  NN0 )
)  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
16 simp1rl 1023 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  m  e.  NN0 )
17 simp1rr 1024 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  n  e.  NN0 )
18 simp2l 984 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
19 simp2r 985 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
20 simp3ll 1029 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 } )
21 simp3rl 1031 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 } )
22 simp3lr 1030 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
23 oveq1 6091 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
z ^ k )  =  ( w ^
k ) )
2423oveq2d 6100 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( a `
 k )  x.  ( w ^ k
) ) )
2524sumeq2sdv 12503 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( w ^ k ) ) )
26 fveq2 5731 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
a `  k )  =  ( a `  j ) )
27 oveq2 6092 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
w ^ k )  =  ( w ^
j ) )
2826, 27oveq12d 6102 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( a `  k
)  x.  ( w ^ k ) )  =  ( ( a `
 j )  x.  ( w ^ j
) ) )
2928cbvsumv 12495 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) )
3025, 29syl6eq 2486 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3130cbvmptv 4303 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3222, 31syl6eq 2486 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
33 simp3rr 1032 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )
3423oveq2d 6100 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( b `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( w ^ k
) ) )
3534sumeq2sdv 12503 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( w ^ k ) ) )
36 fveq2 5731 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
3736, 27oveq12d 6102 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( b `  k
)  x.  ( w ^ k ) )  =  ( ( b `
 j )  x.  ( w ^ j
) ) )
3837cbvsumv 12495 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) )
3935, 38syl6eq 2486 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4039cbvmptv 4303 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4133, 40syl6eq 2486 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) ) )
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 20139 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( F  o F  +  G )  e.  (Poly `  S )
)
43423expia 1156 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  o F  +  G )  e.  (Poly `  S )
) )
4443rexlimdvva 2839 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  o F  +  G )  e.  (Poly `  S )
) )
4510, 44syl5bir 211 . . . 4  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  o F  +  G )  e.  (Poly `  S )
) )
4645rexlimdvva 2839 . . 3  |-  ( ph  ->  ( E. m  e. 
NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  o F  +  G )  e.  (Poly `  S )
) )
479, 46syl5bir 211 . 2  |-  ( ph  ->  ( ( E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  o F  +  G )  e.  (Poly `  S )
) )
484, 8, 47mp2and 662 1  |-  ( ph  ->  ( F  o F  +  G )  e.  (Poly `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708    u. cun 3320    C_ wss 3322   {csn 3816    e. cmpt 4269   "cima 4884   ` cfv 5457  (class class class)co 6084    o Fcof 6306    ^m cmap 7021   CCcc 8993   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000   NN0cn0 10226   ZZ>=cuz 10493   ...cfz 11048   ^cexp 11387   sum_csu 12484  Polycply 20108
This theorem is referenced by:  plysub  20143  plyaddcl  20144  plyco  20165  plydivlem4  20218  iaa  20247  rngunsnply  27369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-ply 20112
  Copyright terms: Public domain W3C validator