MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyaddlem1 Unicode version

Theorem plyaddlem1 19595
Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plyaddlem1  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Distinct variable groups:    B, k    k, M    k, N    z,
k, ph
Allowed substitution hints:    A( z, k)    B( z)    S( z, k)    F( z, k)    G( z, k)    M( z)    N( z)

Proof of Theorem plyaddlem1
StepHypRef Expression
1 cnex 8818 . . . 4  |-  CC  e.  _V
21a1i 10 . . 3  |-  ( ph  ->  CC  e.  _V )
3 sumex 12160 . . . 4  |-  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V
43a1i 10 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V )
5 sumex 12160 . . . 4  |-  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V
65a1i 10 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V )
7 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
8 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
92, 4, 6, 7, 8offval2 6095 . 2  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
10 fzfid 11035 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... if ( M  <_  N ,  N ,  M ) )  e. 
Fin )
11 elfznn0 10822 . . . . . 6  |-  ( k  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
k  e.  NN0 )
12 plyaddlem.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
1312adantr 451 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
14 ffvelrn 5663 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1513, 14sylan 457 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
16 expcl 11121 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
1716adantll 694 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
1815, 17mulcld 8855 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
1911, 18sylan2 460 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
20 plyaddlem.b . . . . . . . . 9  |-  ( ph  ->  B : NN0 --> CC )
2120adantr 451 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
22 ffvelrn 5663 . . . . . . . 8  |-  ( ( B : NN0 --> CC  /\  k  e.  NN0 )  -> 
( B `  k
)  e.  CC )
2321, 22sylan 457 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
2423, 17mulcld 8855 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2511, 24sylan2 460 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2610, 19, 25fsumadd 12211 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
27 ffn 5389 . . . . . . . . . . 11  |-  ( A : NN0 --> CC  ->  A  Fn  NN0 )
2812, 27syl 15 . . . . . . . . . 10  |-  ( ph  ->  A  Fn  NN0 )
29 ffn 5389 . . . . . . . . . . 11  |-  ( B : NN0 --> CC  ->  B  Fn  NN0 )
3020, 29syl 15 . . . . . . . . . 10  |-  ( ph  ->  B  Fn  NN0 )
31 nn0ex 9971 . . . . . . . . . . 11  |-  NN0  e.  _V
3231a1i 10 . . . . . . . . . 10  |-  ( ph  ->  NN0  e.  _V )
33 inidm 3378 . . . . . . . . . 10  |-  ( NN0 
i^i  NN0 )  =  NN0
34 eqidd 2284 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  =  ( A `  k ) )
35 eqidd 2284 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  =  ( B `  k ) )
3628, 30, 32, 32, 33, 34, 35ofval 6087 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  o F  +  B
) `  k )  =  ( ( A `
 k )  +  ( B `  k
) ) )
3736adantlr 695 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A  o F  +  B ) `  k )  =  ( ( A `  k
)  +  ( B `
 k ) ) )
3837oveq1d 5873 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  +  ( B `
 k ) )  x.  ( z ^
k ) ) )
3915, 23, 17adddird 8860 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A `  k )  +  ( B `  k ) )  x.  ( z ^ k ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
4038, 39eqtrd 2315 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
4111, 40sylan2 460 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
4241sumeq2dv 12176 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  o F  +  B ) `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
43 plyaddlem.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
4443nn0zd 10115 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
45 plyaddlem.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
46 ifcl 3601 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
4745, 43, 46syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
4847nn0zd 10115 . . . . . . . . 9  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
4943nn0red 10019 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
5045nn0red 10019 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
51 max1 10514 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
5249, 50, 51syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
53 eluz2 10236 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  N ,  N ,  M ) ) )
5444, 48, 52, 53syl3anbrc 1136 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M ) )
55 fzss2 10831 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
5654, 55syl 15 . . . . . . 7  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
5756adantr 451 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
58 elfznn0 10822 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
5958, 18sylan2 460 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
60 eldifn 3299 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
6160adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  -.  k  e.  (
0 ... M ) )
62 eldifi 3298 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
6362, 11syl 15 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
6463adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  NN0 )
65 nn0uz 10262 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
66 peano2nn0 10004 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
6743, 66syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
6867, 65syl6eleq 2373 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
69 uzsplit 10855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
7068, 69syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7165, 70syl5eq 2327 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7243nn0cnd 10020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
73 ax-1cn 8795 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
74 pncan 9057 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
7572, 73, 74sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
7675oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
7776uneq1d 3328 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7871, 77eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7978ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
8064, 79eleqtrd 2359 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
81 elun 3316 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
8280, 81sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  ( 0 ... M )  \/  k  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
8382ord 366 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( -.  k  e.  ( 0 ... M
)  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
8461, 83mpd 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) )
85 ffun 5391 . . . . . . . . . . . . . 14  |-  ( A : NN0 --> CC  ->  Fun 
A )
8612, 85syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  A )
87 ssun2 3339 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
8887, 71syl5sseqr 3227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
89 fdm 5393 . . . . . . . . . . . . . . 15  |-  ( A : NN0 --> CC  ->  dom 
A  =  NN0 )
9012, 89syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  A  =  NN0 )
9188, 90sseqtr4d 3215 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
92 funfvima2 5754 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
9386, 91, 92syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
9493ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
9584, 94mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) )
96 plyaddlem.a2 . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
9796ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
9895, 97eleqtrd 2359 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  { 0 } )
99 elsni 3664 . . . . . . . . 9  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
10098, 99syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  =  0 )
101100oveq1d 5873 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
10263, 17sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( z ^ k
)  e.  CC )
103102mul02d 9010 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
104101, 103eqtrd 2315 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  0 )
10557, 59, 104, 10fsumss 12198 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( A `  k
)  x.  ( z ^ k ) ) )
10645nn0zd 10115 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
107 max2 10516 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
10849, 50, 107syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
109 eluz2 10236 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  N  <_  if ( M  <_  N ,  N ,  M ) ) )
110106, 48, 108, 109syl3anbrc 1136 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N ) )
111 fzss2 10831 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
112110, 111syl 15 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
113112adantr 451 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
114 elfznn0 10822 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
115114, 24sylan2 460 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
116 eldifn 3299 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
117116adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  -.  k  e.  (
0 ... N ) )
118 eldifi 3298 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
119118, 11syl 15 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
120119adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  NN0 )
121 peano2nn0 10004 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
12245, 121syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
123122, 65syl6eleq 2373 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
124 uzsplit 10855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
125123, 124syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
12665, 125syl5eq 2327 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
12745nn0cnd 10020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  CC )
128 pncan 9057 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
129127, 73, 128sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
130129oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
131130uneq1d 3328 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
132126, 131eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
133132ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
134120, 133eleqtrd 2359 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
135 elun 3316 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  \/  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
136134, 135sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  ( 0 ... N )  \/  k  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
137136ord 366 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( -.  k  e.  ( 0 ... N
)  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
138117, 137mpd 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ZZ>= `  ( N  +  1
) ) )
139 ffun 5391 . . . . . . . . . . . . . 14  |-  ( B : NN0 --> CC  ->  Fun 
B )
14020, 139syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  B )
141 ssun2 3339 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
142141, 126syl5sseqr 3227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
143 fdm 5393 . . . . . . . . . . . . . . 15  |-  ( B : NN0 --> CC  ->  dom 
B  =  NN0 )
14420, 143syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  B  =  NN0 )
145142, 144sseqtr4d 3215 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
146 funfvima2 5754 . . . . . . . . . . . . 13  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  k )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
147140, 145, 146syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
148147ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
149138, 148mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) )
150 plyaddlem.b2 . . . . . . . . . . 11  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
151150ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
152149, 151eleqtrd 2359 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  { 0 } )
153 elsni 3664 . . . . . . . . 9  |-  ( ( B `  k )  e.  { 0 }  ->  ( B `  k )  =  0 )
154152, 153syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  =  0 )
155154oveq1d 5873 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
156119, 17sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( z ^ k
)  e.  CC )
157156mul02d 9010 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
158155, 157eqtrd 2315 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  0 )
159113, 115, 158, 10fsumss 12198 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
160105, 159oveq12d 5876 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
16126, 42, 1603eqtr4d 2325 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  o F  +  B ) `  k
)  x.  ( z ^ k ) )  =  ( sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
162161mpteq2dva 4106 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
1639, 162eqtr4d 2318 1  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   ifcif 3565   {csn 3640   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868    - cmin 9037   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104   sum_csu 12158  Polycply 19566
This theorem is referenced by:  plyaddlem  19597  coeaddlem  19630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator