MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyaddlem1 Structured version   Unicode version

Theorem plyaddlem1 20122
Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plyaddlem1  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Distinct variable groups:    B, k    k, M    k, N    z,
k, ph
Allowed substitution hints:    A( z, k)    B( z)    S( z, k)    F( z, k)    G( z, k)    M( z)    N( z)

Proof of Theorem plyaddlem1
StepHypRef Expression
1 cnex 9061 . . . 4  |-  CC  e.  _V
21a1i 11 . . 3  |-  ( ph  ->  CC  e.  _V )
3 sumex 12471 . . . 4  |-  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V
43a1i 11 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V )
5 sumex 12471 . . . 4  |-  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V
65a1i 11 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V )
7 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
8 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
92, 4, 6, 7, 8offval2 6314 . 2  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
10 fzfid 11302 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... if ( M  <_  N ,  N ,  M ) )  e. 
Fin )
11 elfznn0 11073 . . . . . 6  |-  ( k  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
k  e.  NN0 )
12 plyaddlem.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
1312adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
1413ffvelrnda 5862 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
15 expcl 11389 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
1615adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
1714, 16mulcld 9098 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
1811, 17sylan2 461 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
19 plyaddlem.b . . . . . . . . 9  |-  ( ph  ->  B : NN0 --> CC )
2019adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
2120ffvelrnda 5862 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
2221, 16mulcld 9098 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2311, 22sylan2 461 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2410, 18, 23fsumadd 12522 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
25 ffn 5583 . . . . . . . . . . 11  |-  ( A : NN0 --> CC  ->  A  Fn  NN0 )
2612, 25syl 16 . . . . . . . . . 10  |-  ( ph  ->  A  Fn  NN0 )
27 ffn 5583 . . . . . . . . . . 11  |-  ( B : NN0 --> CC  ->  B  Fn  NN0 )
2819, 27syl 16 . . . . . . . . . 10  |-  ( ph  ->  B  Fn  NN0 )
29 nn0ex 10217 . . . . . . . . . . 11  |-  NN0  e.  _V
3029a1i 11 . . . . . . . . . 10  |-  ( ph  ->  NN0  e.  _V )
31 inidm 3542 . . . . . . . . . 10  |-  ( NN0 
i^i  NN0 )  =  NN0
32 eqidd 2436 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  =  ( A `  k ) )
33 eqidd 2436 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  =  ( B `  k ) )
3426, 28, 30, 30, 31, 32, 33ofval 6306 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  o F  +  B
) `  k )  =  ( ( A `
 k )  +  ( B `  k
) ) )
3534adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A  o F  +  B ) `  k )  =  ( ( A `  k
)  +  ( B `
 k ) ) )
3635oveq1d 6088 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  +  ( B `
 k ) )  x.  ( z ^
k ) ) )
3714, 21, 16adddird 9103 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A `  k )  +  ( B `  k ) )  x.  ( z ^ k ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
3836, 37eqtrd 2467 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
3911, 38sylan2 461 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
4039sumeq2dv 12487 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  o F  +  B ) `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
41 plyaddlem.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
4241nn0zd 10363 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43 plyaddlem.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
44 ifcl 3767 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
4543, 41, 44syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
4645nn0zd 10363 . . . . . . . . 9  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
4741nn0red 10265 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
4843nn0red 10265 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
49 max1 10763 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
5047, 48, 49syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
51 eluz2 10484 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  N ,  N ,  M ) ) )
5242, 46, 50, 51syl3anbrc 1138 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M ) )
53 fzss2 11082 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
5452, 53syl 16 . . . . . . 7  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
5554adantr 452 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
56 elfznn0 11073 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
5756, 17sylan2 461 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
58 eldifn 3462 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
5958adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  -.  k  e.  (
0 ... M ) )
60 eldifi 3461 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
6160, 11syl 16 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
6261adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  NN0 )
63 nn0uz 10510 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
64 peano2nn0 10250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
6541, 64syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
6665, 63syl6eleq 2525 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
67 uzsplit 11108 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
6963, 68syl5eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7041nn0cnd 10266 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
71 ax-1cn 9038 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
72 pncan 9301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
7370, 71, 72sylancl 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
7473oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
7574uneq1d 3492 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7669, 75eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7776ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
7862, 77eleqtrd 2511 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
79 elun 3480 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
8078, 79sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  ( 0 ... M )  \/  k  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
8180ord 367 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( -.  k  e.  ( 0 ... M
)  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
8259, 81mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) )
83 ffun 5585 . . . . . . . . . . . . . 14  |-  ( A : NN0 --> CC  ->  Fun 
A )
8412, 83syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  A )
85 ssun2 3503 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
8685, 69syl5sseqr 3389 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
87 fdm 5587 . . . . . . . . . . . . . . 15  |-  ( A : NN0 --> CC  ->  dom 
A  =  NN0 )
8812, 87syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  A  =  NN0 )
8986, 88sseqtr4d 3377 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
90 funfvima2 5966 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
9184, 89, 90syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
9291ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
9382, 92mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) )
94 plyaddlem.a2 . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
9594ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
9693, 95eleqtrd 2511 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  { 0 } )
97 elsni 3830 . . . . . . . . 9  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
9896, 97syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  =  0 )
9998oveq1d 6088 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
10061, 16sylan2 461 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( z ^ k
)  e.  CC )
101100mul02d 9254 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
10299, 101eqtrd 2467 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  0 )
10355, 57, 102, 10fsumss 12509 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( A `  k
)  x.  ( z ^ k ) ) )
10443nn0zd 10363 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
105 max2 10765 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
10647, 48, 105syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
107 eluz2 10484 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  N  <_  if ( M  <_  N ,  N ,  M ) ) )
108104, 46, 106, 107syl3anbrc 1138 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N ) )
109 fzss2 11082 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
110108, 109syl 16 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
111110adantr 452 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
112 elfznn0 11073 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
113112, 22sylan2 461 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
114 eldifn 3462 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
115114adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  -.  k  e.  (
0 ... N ) )
116 eldifi 3461 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
117116, 11syl 16 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
118117adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  NN0 )
119 peano2nn0 10250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
12043, 119syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
121120, 63syl6eleq 2525 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
122 uzsplit 11108 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
123121, 122syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
12463, 123syl5eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
12543nn0cnd 10266 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  CC )
126 pncan 9301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
127125, 71, 126sylancl 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
128127oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
129128uneq1d 3492 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
130124, 129eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
131130ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
132118, 131eleqtrd 2511 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
133 elun 3480 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  \/  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
134132, 133sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  ( 0 ... N )  \/  k  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
135134ord 367 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( -.  k  e.  ( 0 ... N
)  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
136115, 135mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ZZ>= `  ( N  +  1
) ) )
137 ffun 5585 . . . . . . . . . . . . . 14  |-  ( B : NN0 --> CC  ->  Fun 
B )
13819, 137syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  B )
139 ssun2 3503 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
140139, 124syl5sseqr 3389 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
141 fdm 5587 . . . . . . . . . . . . . . 15  |-  ( B : NN0 --> CC  ->  dom 
B  =  NN0 )
14219, 141syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  B  =  NN0 )
143140, 142sseqtr4d 3377 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
144 funfvima2 5966 . . . . . . . . . . . . 13  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  k )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
145138, 143, 144syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
146145ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
147136, 146mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) )
148 plyaddlem.b2 . . . . . . . . . . 11  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
149148ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
150147, 149eleqtrd 2511 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  { 0 } )
151 elsni 3830 . . . . . . . . 9  |-  ( ( B `  k )  e.  { 0 }  ->  ( B `  k )  =  0 )
152150, 151syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  =  0 )
153152oveq1d 6088 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
154117, 16sylan2 461 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( z ^ k
)  e.  CC )
155154mul02d 9254 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
156153, 155eqtrd 2467 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  0 )
157111, 113, 156, 10fsumss 12509 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
158103, 157oveq12d 6091 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
15924, 40, 1583eqtr4d 2477 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  o F  +  B ) `  k
)  x.  ( z ^ k ) )  =  ( sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
160159mpteq2dva 4287 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
1619, 160eqtr4d 2470 1  |-  ( ph  ->  ( F  o F  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  o F  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    \ cdif 3309    u. cun 3310    C_ wss 3312   ifcif 3731   {csn 3806   class class class wbr 4204    e. cmpt 4258   dom cdm 4870   "cima 4873   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295   CCcc 8978   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    <_ cle 9111    - cmin 9281   NN0cn0 10211   ZZcz 10272   ZZ>=cuz 10478   ...cfz 11033   ^cexp 11372   sum_csu 12469  Polycply 20093
This theorem is referenced by:  plyaddlem  20124  coeaddlem  20157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-fz 11034  df-fzo 11126  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-clim 12272  df-sum 12470
  Copyright terms: Public domain W3C validator