MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjlem Unicode version

Theorem plycjlem 19657
Description: Lemma for plycj 19658 and coecj 19659. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1  |-  N  =  (deg `  F )
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlem.3  |-  A  =  (coeff `  F )
Assertion
Ref Expression
plycjlem  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
Distinct variable groups:    z, k, A    k, F, z    k, N, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycj.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11590 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 452 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  z )  e.  CC )
4 cjf 11589 . . . . . 6  |-  * : CC --> CC
54a1i 10 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  * : CC
--> CC )
65feqmptd 5575 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  *  =  ( z  e.  CC  |->  ( * `  z
) ) )
7 fzfid 11035 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  (
0 ... N )  e. 
Fin )
8 plycjlem.3 . . . . . . . . . 10  |-  A  =  (coeff `  F )
98coef3 19614 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
109adantr 451 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  A : NN0 --> CC )
11 elfznn0 10822 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
12 ffvelrn 5663 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1310, 11, 12syl2an 463 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
14 expcl 11121 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
1511, 14sylan2 460 . . . . . . . 8  |-  ( ( x  e.  CC  /\  k  e.  ( 0 ... N ) )  ->  ( x ^
k )  e.  CC )
1615adantll 694 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
1713, 16mulcld 8855 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
187, 17fsumcl 12206 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
19 plycj.1 . . . . . 6  |-  N  =  (deg `  F )
208, 19coeid 19620 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) ) )
21 fveq2 5525 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
2218, 20, 6, 21fmptco 5691 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( *  o.  F )  =  ( x  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) ) )
23 oveq1 5865 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
2423oveq2d 5874 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
2524sumeq2sdv 12177 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
2625fveq2d 5529 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
273, 6, 22, 26fmptco 5691 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( (
*  o.  F )  o.  * )  =  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) ) )
281, 27syl5eq 2327 . 2  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) ) )
29 fzfid 11035 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
0 ... N )  e. 
Fin )
309adantr 451 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  A : NN0 --> CC )
3130, 11, 12syl2an 463 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
32 expcl 11121 . . . . . . 7  |-  ( ( ( * `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  z ) ^ k
)  e.  CC )
333, 11, 32syl2an 463 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
3431, 33mulcld 8855 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
3529, 34fsumcj 12268 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( * `  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
3631, 33cjmuld 11706 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
37 fvco3 5596 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
3830, 11, 37syl2an 463 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
39 cjexp 11635 . . . . . . . . 9  |-  ( ( ( * `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( * `  z
) ^ k ) )  =  ( ( * `  ( * `
 z ) ) ^ k ) )
403, 11, 39syl2an 463 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
41 cjcj 11625 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
4241ad2antlr 707 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
4342oveq1d 5873 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
4440, 43eqtr2d 2316 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
4538, 44oveq12d 5876 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
4636, 45eqtr4d 2318 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
4746sumeq2dv 12176 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
4835, 47eqtrd 2315 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
4948mpteq2dva 4106 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
5028, 49eqtrd 2315 1  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    x. cmul 8742   NN0cn0 9965   ...cfz 10782   ^cexp 11104   *ccj 11581   sum_csu 12158  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  plycj  19658  coecj  19659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator