MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjlem Structured version   Unicode version

Theorem plycjlem 20232
Description: Lemma for plycj 20233 and coecj 20234. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1  |-  N  =  (deg `  F )
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlem.3  |-  A  =  (coeff `  F )
Assertion
Ref Expression
plycjlem  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
Distinct variable groups:    z, k, A    k, F, z    k, N, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycj.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11948 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 454 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  z )  e.  CC )
4 cjf 11947 . . . . . 6  |-  * : CC --> CC
54a1i 11 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  * : CC
--> CC )
65feqmptd 5815 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  *  =  ( z  e.  CC  |->  ( * `  z
) ) )
7 fzfid 11350 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  (
0 ... N )  e. 
Fin )
8 plycjlem.3 . . . . . . . . . 10  |-  A  =  (coeff `  F )
98coef3 20189 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
109adantr 453 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  A : NN0 --> CC )
11 elfznn0 11121 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
12 ffvelrn 5904 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1310, 11, 12syl2an 465 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
14 expcl 11437 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
1511, 14sylan2 462 . . . . . . . 8  |-  ( ( x  e.  CC  /\  k  e.  ( 0 ... N ) )  ->  ( x ^
k )  e.  CC )
1615adantll 696 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
1713, 16mulcld 9146 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
187, 17fsumcl 12565 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
19 plycj.1 . . . . . 6  |-  N  =  (deg `  F )
208, 19coeid 20195 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) ) )
21 fveq2 5763 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
2218, 20, 6, 21fmptco 5937 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( *  o.  F )  =  ( x  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) ) )
23 oveq1 6124 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
2423oveq2d 6133 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
2524sumeq2sdv 12536 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
2625fveq2d 5767 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
273, 6, 22, 26fmptco 5937 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( (
*  o.  F )  o.  * )  =  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) ) )
281, 27syl5eq 2487 . 2  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) ) )
29 fzfid 11350 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
0 ... N )  e. 
Fin )
309adantr 453 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  A : NN0 --> CC )
3130, 11, 12syl2an 465 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
32 expcl 11437 . . . . . . 7  |-  ( ( ( * `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  z ) ^ k
)  e.  CC )
333, 11, 32syl2an 465 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
3431, 33mulcld 9146 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
3529, 34fsumcj 12627 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( * `  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
3631, 33cjmuld 12064 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
37 fvco3 5836 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
3830, 11, 37syl2an 465 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
39 cjexp 11993 . . . . . . . . 9  |-  ( ( ( * `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( * `  z
) ^ k ) )  =  ( ( * `  ( * `
 z ) ) ^ k ) )
403, 11, 39syl2an 465 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
41 cjcj 11983 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
4241ad2antlr 709 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
4342oveq1d 6132 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
4440, 43eqtr2d 2476 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
4538, 44oveq12d 6135 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
4636, 45eqtr4d 2478 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
4746sumeq2dv 12535 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
4835, 47eqtrd 2475 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
4948mpteq2dva 4326 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
5028, 49eqtrd 2475 1  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1654    e. wcel 1728    e. cmpt 4297    o. ccom 4917   -->wf 5485   ` cfv 5489  (class class class)co 6117   CCcc 9026   0cc0 9028    x. cmul 9033   NN0cn0 10259   ...cfz 11081   ^cexp 11420   *ccj 11939   sum_csu 12517  Polycply 20141  coeffccoe 20143  degcdgr 20144
This theorem is referenced by:  plycj  20233  coecj  20234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-inf2 7632  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105  ax-pre-sup 9106  ax-addf 9107
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-se 4577  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-isom 5498  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-of 6341  df-1st 6385  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-1o 6760  df-oadd 6764  df-er 6941  df-map 7056  df-pm 7057  df-en 7146  df-dom 7147  df-sdom 7148  df-fin 7149  df-sup 7482  df-oi 7515  df-card 7864  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-div 9716  df-nn 10039  df-2 10096  df-3 10097  df-n0 10260  df-z 10321  df-uz 10527  df-rp 10651  df-fz 11082  df-fzo 11174  df-fl 11240  df-seq 11362  df-exp 11421  df-hash 11657  df-cj 11942  df-re 11943  df-im 11944  df-sqr 12078  df-abs 12079  df-clim 12320  df-rlim 12321  df-sum 12518  df-0p 19598  df-ply 20145  df-coe 20147  df-dgr 20148
  Copyright terms: Public domain W3C validator