MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco Unicode version

Theorem plyco 19623
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyco.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyco.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyco.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plyco  |-  ( ph  ->  ( F  o.  G
)  e.  (Poly `  S ) )
Distinct variable groups:    x, y, F    x, G, y    ph, x, y    x, S, y

Proof of Theorem plyco
Dummy variables  k 
d  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.2 . . . . 5  |-  ( ph  ->  G  e.  (Poly `  S ) )
2 plyf 19580 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
31, 2syl 15 . . . 4  |-  ( ph  ->  G : CC --> CC )
4 ffvelrn 5663 . . . 4  |-  ( ( G : CC --> CC  /\  z  e.  CC )  ->  ( G `  z
)  e.  CC )
53, 4sylan 457 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( G `
 z )  e.  CC )
63feqmptd 5575 . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( G `
 z ) ) )
7 plyco.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
8 eqid 2283 . . . . 5  |-  (coeff `  F )  =  (coeff `  F )
9 eqid 2283 . . . . 5  |-  (deg `  F )  =  (deg
`  F )
108, 9coeid 19620 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
x ^ k ) ) ) )
117, 10syl 15 . . 3  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( x ^ k
) ) ) )
12 oveq1 5865 . . . . 5  |-  ( x  =  ( G `  z )  ->  (
x ^ k )  =  ( ( G `
 z ) ^
k ) )
1312oveq2d 5874 . . . 4  |-  ( x  =  ( G `  z )  ->  (
( (coeff `  F
) `  k )  x.  ( x ^ k
) )  =  ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )
1413sumeq2sdv 12177 . . 3  |-  ( x  =  ( G `  z )  ->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )
155, 6, 11, 14fmptco 5691 . 2  |-  ( ph  ->  ( F  o.  G
)  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
16 dgrcl 19615 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
177, 16syl 15 . . 3  |-  ( ph  ->  (deg `  F )  e.  NN0 )
18 oveq2 5866 . . . . . . . 8  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
1918sumeq1d 12174 . . . . . . 7  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
2019mpteq2dv 4107 . . . . . 6  |-  ( x  =  0  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
2120eleq1d 2349 . . . . 5  |-  ( x  =  0  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
2221imbi2d 307 . . . 4  |-  ( x  =  0  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
23 oveq2 5866 . . . . . . . 8  |-  ( x  =  d  ->  (
0 ... x )  =  ( 0 ... d
) )
2423sumeq1d 12174 . . . . . . 7  |-  ( x  =  d  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
2524mpteq2dv 4107 . . . . . 6  |-  ( x  =  d  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
2625eleq1d 2349 . . . . 5  |-  ( x  =  d  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
2726imbi2d 307 . . . 4  |-  ( x  =  d  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
28 oveq2 5866 . . . . . . . 8  |-  ( x  =  ( d  +  1 )  ->  (
0 ... x )  =  ( 0 ... (
d  +  1 ) ) )
2928sumeq1d 12174 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
3029mpteq2dv 4107 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
3130eleq1d 2349 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
3231imbi2d 307 . . . 4  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
33 oveq2 5866 . . . . . . . 8  |-  ( x  =  (deg `  F
)  ->  ( 0 ... x )  =  ( 0 ... (deg `  F ) ) )
3433sumeq1d 12174 . . . . . . 7  |-  ( x  =  (deg `  F
)  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )
3534mpteq2dv 4107 . . . . . 6  |-  ( x  =  (deg `  F
)  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
3635eleq1d 2349 . . . . 5  |-  ( x  =  (deg `  F
)  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) )
3736imbi2d 307 . . . 4  |-  ( x  =  (deg `  F
)  ->  ( ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) ) )
38 0z 10035 . . . . . . . . 9  |-  0  e.  ZZ
395exp0d 11239 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G `  z ) ^ 0 )  =  1 )
4039oveq2d 5874 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  =  ( ( (coeff `  F
) `  0 )  x.  1 ) )
41 plybss 19576 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
427, 41syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  C_  CC )
43 0cn 8831 . . . . . . . . . . . . . . . . 17  |-  0  e.  CC
4443a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  CC )
4544snssd 3760 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { 0 }  C_  CC )
4642, 45unssd 3351 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
478coef 19612 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> ( S  u.  { 0 } ) )
487, 47syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (coeff `  F ) : NN0 --> ( S  u.  { 0 } ) )
49 0nn0 9980 . . . . . . . . . . . . . . 15  |-  0  e.  NN0
50 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  0  e.  NN0 )  -> 
( (coeff `  F
) `  0 )  e.  ( S  u.  {
0 } ) )
5148, 49, 50sylancl 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (coeff `  F
) `  0 )  e.  ( S  u.  {
0 } ) )
5246, 51sseldd 3181 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (coeff `  F
) `  0 )  e.  CC )
5352adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  CC )  ->  ( (coeff `  F ) `  0
)  e.  CC )
5453mulid1d 8852 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  1 )  =  ( (coeff `  F ) `  0 ) )
5540, 54eqtrd 2315 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  =  ( (coeff `  F ) `  0 ) )
5655, 53eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  e.  CC )
57 fveq2 5525 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
(coeff `  F ) `  k )  =  ( (coeff `  F ) `  0 ) )
58 oveq2 5866 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( G `  z
) ^ k )  =  ( ( G `
 z ) ^
0 ) )
5957, 58oveq12d 5876 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( ( G `  z ) ^ 0 ) ) )
6059fsum1 12214 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( ( (coeff `  F ) `  0
)  x.  ( ( G `  z ) ^ 0 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( ( G `  z ) ^ 0 ) ) )
6138, 56, 60sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( ( (coeff `  F ) `  0
)  x.  ( ( G `  z ) ^ 0 ) ) )
6261, 55eqtrd 2315 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( (coeff `  F ) `  0
) )
6362mpteq2dva 4106 . . . . . 6  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) ) )
64 fconstmpt 4732 . . . . . 6  |-  ( CC 
X.  { ( (coeff `  F ) `  0
) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) )
6563, 64syl6eqr 2333 . . . . 5  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( CC  X.  {
( (coeff `  F
) `  0 ) } ) )
66 plyconst 19588 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  ( (coeff `  F ) `  0
)  e.  ( S  u.  { 0 } ) )  ->  ( CC  X.  { ( (coeff `  F ) `  0
) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
6746, 51, 66syl2anc 642 . . . . . 6  |-  ( ph  ->  ( CC  X.  {
( (coeff `  F
) `  0 ) } )  e.  (Poly `  ( S  u.  {
0 } ) ) )
68 plyun0 19579 . . . . . 6  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
6967, 68syl6eleq 2373 . . . . 5  |-  ( ph  ->  ( CC  X.  {
( (coeff `  F
) `  0 ) } )  e.  (Poly `  S ) )
7065, 69eqeltrd 2357 . . . 4  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
)
71 simprr 733 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )
7246adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( S  u.  { 0 } ) 
C_  CC )
73 peano2nn0 10004 . . . . . . . . . . . . . 14  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
74 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  ( d  +  1 )  e.  NN0 )  ->  ( (coeff `  F
) `  ( d  +  1 ) )  e.  ( S  u.  { 0 } ) )
7548, 73, 74syl2an 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (coeff `  F ) `  (
d  +  1 ) )  e.  ( S  u.  { 0 } ) )
76 plyconst 19588 . . . . . . . . . . . . 13  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  ( (coeff `  F ) `  (
d  +  1 ) )  e.  ( S  u.  { 0 } ) )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
7772, 75, 76syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
7877, 68syl6eleq 2373 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  S )
)
79 nn0p1nn 10003 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  NN )
80 oveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
1 ) )
8180mpteq2dv 4107 . . . . . . . . . . . . . . . 16  |-  ( x  =  1  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) ) )
8281eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
1 ) )  e.  (Poly `  S )
) )
8382imbi2d 307 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  e.  (Poly `  S ) ) ) )
84 oveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( x  =  d  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
d ) )
8584mpteq2dv 4107 . . . . . . . . . . . . . . . 16  |-  ( x  =  d  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) ) )
8685eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) )  e.  (Poly `  S )
) )
8786imbi2d 307 . . . . . . . . . . . . . 14  |-  ( x  =  d  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) ) )
88 oveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( d  +  1 )  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
( d  +  1 ) ) )
8988mpteq2dv 4107 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( d  +  1 )  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )
9089eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( x  =  ( d  +  1 )  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) )
9190imbi2d 307 . . . . . . . . . . . . . 14  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) )  e.  (Poly `  S ) ) ) )
925exp1d 11240 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G `  z ) ^ 1 )  =  ( G `  z
) )
9392mpteq2dva 4106 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  =  ( z  e.  CC  |->  ( G `  z ) ) )
9493, 6eqtr4d 2318 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  =  G )
9594, 1eqeltrd 2357 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  e.  (Poly `  S ) )
96 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  -> 
( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) )
971adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  ->  G  e.  (Poly `  S
) )
98 plyco.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
9998adantlr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
100 plyco.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
101100adantlr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
10296, 97, 99, 101plymul 19600 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  -> 
( ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) )  o F  x.  G )  e.  (Poly `  S
) )
103102expr 598 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  e.  (Poly `  S )  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  o F  x.  G )  e.  (Poly `  S )
) )
104 cnex 8818 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  e.  _V
105104a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
106 ovex 5883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G `  z ) ^ d )  e. 
_V
107106a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  (
( G `  z
) ^ d )  e.  _V )
1085adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  ( G `  z )  e.  CC )
109 eqidd 2284 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  =  ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) ) )
1106adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( z  e.  CC  |->  ( G `  z ) ) )
111105, 107, 108, 109, 110offval2 6095 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  o F  x.  G )  =  ( z  e.  CC  |->  ( ( ( G `  z ) ^ d
)  x.  ( G `
 z ) ) ) )
112 nnnn0 9972 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  NN  ->  d  e.  NN0 )
113112ad2antlr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  d  e.  NN0 )
114108, 113expp1d 11246 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  (
( G `  z
) ^ ( d  +  1 ) )  =  ( ( ( G `  z ) ^ d )  x.  ( G `  z
) ) )
115114mpteq2dva 4106 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN )  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) )  =  ( z  e.  CC  |->  ( ( ( G `  z ) ^ d )  x.  ( G `  z
) ) ) )
116111, 115eqtr4d 2318 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  o F  x.  G )  =  ( z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) )
117116eleq1d 2349 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  o F  x.  G )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) )  e.  (Poly `  S ) ) )
118103, 117sylibd 205 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  e.  (Poly `  S )  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) )  e.  (Poly `  S ) ) )
119118expcom 424 . . . . . . . . . . . . . . 15  |-  ( d  e.  NN  ->  ( ph  ->  ( ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
)  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) ) )
120119a2d 23 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) )  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) ) )
12183, 87, 91, 91, 95, 120nnind 9764 . . . . . . . . . . . . 13  |-  ( ( d  +  1 )  e.  NN  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) )
12279, 121syl 15 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) )  e.  (Poly `  S ) ) )
123122impcom 419 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
)
12498adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
125100adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  x.  y )  e.  S
)
12678, 123, 124, 125plymul 19600 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  o F  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  e.  (Poly `  S ) )
127126adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( ( CC 
X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  o F  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  e.  (Poly `  S ) )
12898adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
12971, 127, 128plyadd 19599 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  o F  +  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  o F  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S ) )
130129expr 598 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  o F  +  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  o F  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S ) ) )
131104a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  CC  e.  _V )
132 sumex 12160 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  _V
133132a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  _V )
134 ovex 5883 . . . . . . . . . . 11  |-  ( ( (coeff `  F ) `  ( d  +  1 ) )  x.  (
( G `  z
) ^ ( d  +  1 ) ) )  e.  _V
135134a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) )  e. 
_V )
136 eqidd 2284 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) ) )
137 fvex 5539 . . . . . . . . . . . 12  |-  ( (coeff `  F ) `  (
d  +  1 ) )  e.  _V
138137a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
(coeff `  F ) `  ( d  +  1 ) )  e.  _V )
139 ovex 5883 . . . . . . . . . . . 12  |-  ( ( G `  z ) ^ ( d  +  1 ) )  e. 
_V
140139a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
( G `  z
) ^ ( d  +  1 ) )  e.  _V )
141 fconstmpt 4732 . . . . . . . . . . . 12  |-  ( CC 
X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  ( d  +  1 ) ) )
142141a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  ( d  +  1 ) ) ) )
143 eqidd 2284 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) ) )
144131, 138, 140, 142, 143offval2 6095 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  o F  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  =  ( z  e.  CC  |->  ( ( (coeff `  F ) `  ( d  +  1 ) )  x.  (
( G `  z
) ^ ( d  +  1 ) ) ) ) )
145131, 133, 135, 136, 144offval2 6095 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  o F  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  o F  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  +  ( ( (coeff `  F ) `  (
d  +  1 ) )  x.  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) ) )
146 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  d  e.  NN0 )
147 nn0uz 10262 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
148146, 147syl6eleq 2373 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  d  e.  ( ZZ>= `  0 )
)
1498coef3 19614 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
1507, 149syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  (coeff `  F ) : NN0 --> CC )
151150ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (coeff `  F ) : NN0 --> CC )
152 elfznn0 10822 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( d  +  1 ) )  ->  k  e.  NN0 )
153 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( (coeff `  F ) : NN0 --> CC  /\  k  e.  NN0 )  ->  (
(coeff `  F ) `  k )  e.  CC )
154151, 152, 153syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( (coeff `  F ) `  k
)  e.  CC )
1555adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  ( G `  z )  e.  CC )
156 expcl 11121 . . . . . . . . . . . . 13  |-  ( ( ( G `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  z ) ^ k
)  e.  CC )
157155, 152, 156syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( ( G `
 z ) ^
k )  e.  CC )
158154, 157mulcld 8855 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  CC )
159 fveq2 5525 . . . . . . . . . . . 12  |-  ( k  =  ( d  +  1 )  ->  (
(coeff `  F ) `  k )  =  ( (coeff `  F ) `  ( d  +  1 ) ) )
160 oveq2 5866 . . . . . . . . . . . 12  |-  ( k  =  ( d  +  1 )  ->  (
( G `  z
) ^ k )  =  ( ( G `
 z ) ^
( d  +  1 ) ) )
161159, 160oveq12d 5876 . . . . . . . . . . 11  |-  ( k  =  ( d  +  1 )  ->  (
( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) ) )
162148, 158, 161fsump1 12219 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... (
d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  +  ( ( (coeff `  F ) `  (
d  +  1 ) )  x.  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )
163162mpteq2dva 4106 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  +  ( ( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) ) ) ) )
164145, 163eqtr4d 2318 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  o F  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  o F  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
165164eleq1d 2349 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  o F  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  o F  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
166130, 165sylibd 205 . . . . . 6  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
167166expcom 424 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
168167a2d 23 . . . 4  |-  ( d  e.  NN0  ->  ( (
ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  -> 
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (
d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) ) )
16922, 27, 32, 37, 70, 168nn0ind 10108 . . 3  |-  ( (deg
`  F )  e. 
NN0  ->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) )
17017, 169mpcom 32 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) )
17115, 170eqeltrd 2357 1  |-  ( ph  ->  ( F  o.  G
)  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    C_ wss 3152   {csn 3640    e. cmpt 4077    X. cxp 4687    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104   sum_csu 12158  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  dgrcolem1  19654  dgrcolem2  19655  taylply2  19747  ftalem7  20316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator