MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Unicode version

Theorem plyco0 20068
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem plyco0
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simprr 734 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( A `  k )  =/=  0
)
2 ffun 5556 . . . . . . . . . . . 12  |-  ( A : NN0 --> CC  ->  Fun 
A )
32adantl 453 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  Fun  A )
4 peano2nn0 10220 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
54adantr 452 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  NN0 )
6 eluznn0 10506 . . . . . . . . . . . . . . 15  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
76ex 424 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  NN0  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  NN0 ) )
85, 7syl 16 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  NN0 ) )
98ssrdv 3318 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ZZ>= `  ( N  +  1 ) )  C_  NN0 )
10 fdm 5558 . . . . . . . . . . . . 13  |-  ( A : NN0 --> CC  ->  dom 
A  =  NN0 )
1110adantl 453 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  dom  A  =  NN0 )
129, 11sseqtr4d 3349 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ZZ>= `  ( N  +  1 ) )  C_  dom  A )
13 funfvima2 5937 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
143, 12, 13syl2anc 643 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
1514ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
16 nn0z 10264 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1716adantr 452 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  e.  ZZ )
1817peano2zd 10338 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  ZZ )
1918ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( N  +  1 )  e.  ZZ )
20 nn0z 10264 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  ZZ )
2120ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  e.  ZZ )
22 eluz 10459 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  <->  ( N  +  1 )  <_ 
k ) )
2319, 21, 22syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  <-> 
( N  +  1 )  <_  k )
)
24 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
2524eleq2d 2475 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  <-> 
( A `  k
)  e.  { 0 } ) )
26 fvex 5705 . . . . . . . . . . 11  |-  ( A `
 k )  e. 
_V
2726elsnc 3801 . . . . . . . . . 10  |-  ( ( A `  k )  e.  { 0 }  <-> 
( A `  k
)  =  0 )
2825, 27syl6bb 253 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  <-> 
( A `  k
)  =  0 ) )
2915, 23, 283imtr3d 259 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( N  +  1 )  <_  k  ->  ( A `  k )  =  0 ) )
3029necon3ad 2607 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  =/=  0  ->  -.  ( N  +  1 )  <_  k ) )
311, 30mpd 15 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  -.  ( N  +  1 )  <_  k )
32 nn0re 10190 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  RR )
3332ad2antrl 709 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  e.  RR )
3418zred 10335 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  RR )
3534ad2antrr 707 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( N  +  1 )  e.  RR )
3633, 35ltnled 9180 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  <  ( N  +  1 )  <->  -.  ( N  +  1 )  <_ 
k ) )
3731, 36mpbird 224 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  <  ( N  +  1 ) )
3817ad2antrr 707 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  N  e.  ZZ )
39 zleltp1 10286 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
4021, 38, 39syl2anc 643 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  <_  N  <->  k  <  ( N  +  1 ) ) )
4137, 40mpbird 224 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  <_  N )
4241expr 599 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  k  e.  NN0 )  -> 
( ( A `  k )  =/=  0  ->  k  <_  N )
)
4342ralrimiva 2753 . 2  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )  ->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )
44 simpr 448 . . . . . . . 8  |-  ( ( A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>=
`  ( N  + 
1 ) ) )  ->  n  e.  (
ZZ>= `  ( N  + 
1 ) ) )
45 eluznn0 10506 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN0  /\  n  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  n  e.  NN0 )
465, 44, 45syl2an 464 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  NN0 )
47 nn0re 10190 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
4847adantr 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  e.  RR )
4948adantr 452 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  e.  RR )
5034adantr 452 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  +  1 )  e.  RR )
5146nn0red 10235 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  RR )
5249ltp1d 9901 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  <  ( N  +  1 ) )
53 eluzle 10458 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_  n )
5453ad2antll 710 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  +  1 )  <_  n )
5549, 50, 51, 52, 54ltletrd 9190 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  <  n )
5649, 51ltnled 9180 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  <  n  <->  -.  n  <_  N ) )
5755, 56mpbid 202 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  -.  n  <_  N )
58 simprl 733 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )
59 fveq2 5691 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( A `  k )  =  ( A `  n ) )
6059neeq1d 2584 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( A `  k
)  =/=  0  <->  ( A `  n )  =/=  0 ) )
61 breq1 4179 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
k  <_  N  <->  n  <_  N ) )
6260, 61imbi12d 312 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  n
)  =/=  0  ->  n  <_  N ) ) )
6362rspcva 3014 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  A. k  e.  NN0  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)  ->  ( ( A `  n )  =/=  0  ->  n  <_  N ) )
6446, 58, 63syl2anc 643 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  (
( A `  n
)  =/=  0  ->  n  <_  N ) )
6564necon1bd 2639 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( -.  n  <_  N  -> 
( A `  n
)  =  0 ) )
6657, 65mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( A `  n )  =  0 )
67 ffn 5554 . . . . . . . . 9  |-  ( A : NN0 --> CC  ->  A  Fn  NN0 )
6867ad2antlr 708 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  A  Fn  NN0 )
69 fniniseg 5814 . . . . . . . 8  |-  ( A  Fn  NN0  ->  ( n  e.  ( `' A " { 0 } )  <-> 
( n  e.  NN0  /\  ( A `  n
)  =  0 ) ) )
7068, 69syl 16 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  (
n  e.  ( `' A " { 0 } )  <->  ( n  e.  NN0  /\  ( A `
 n )  =  0 ) ) )
7146, 66, 70mpbir2and 889 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  ( `' A " { 0 } ) )
7271expr 599 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
n  e.  ( ZZ>= `  ( N  +  1
) )  ->  n  e.  ( `' A " { 0 } ) ) )
7372ssrdv 3318 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( ZZ>=
`  ( N  + 
1 ) )  C_  ( `' A " { 0 } ) )
74 funimass3 5809 . . . . . 6  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( N  + 
1 ) ) ) 
C_  { 0 }  <-> 
( ZZ>= `  ( N  +  1 ) ) 
C_  ( `' A " { 0 } ) ) )
753, 12, 74syl2anc 643 . . . . 5  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  C_  { 0 }  <->  ( ZZ>= `  ( N  +  1 ) )  C_  ( `' A " { 0 } ) ) )
7675adantr 452 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
( A " ( ZZ>=
`  ( N  + 
1 ) ) ) 
C_  { 0 }  <-> 
( ZZ>= `  ( N  +  1 ) ) 
C_  ( `' A " { 0 } ) ) )
7773, 76mpbird 224 . . 3  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  C_  { 0 } )
7848ltp1d 9901 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  <  ( N  +  1 ) )
7948, 34ltnled 9180 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  < 
( N  +  1 )  <->  -.  ( N  +  1 )  <_  N ) )
8078, 79mpbid 202 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  -.  ( N  +  1 )  <_  N )
8180adantr 452 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  -.  ( N  +  1
)  <_  N )
82 fveq2 5691 . . . . . . . . . . 11  |-  ( k  =  ( N  + 
1 )  ->  ( A `  k )  =  ( A `  ( N  +  1
) ) )
8382neeq1d 2584 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  (
( A `  k
)  =/=  0  <->  ( A `  ( N  +  1 ) )  =/=  0 ) )
84 breq1 4179 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  (
k  <_  N  <->  ( N  +  1 )  <_  N ) )
8583, 84imbi12d 312 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  ( N  +  1 ) )  =/=  0  -> 
( N  +  1 )  <_  N )
) )
8685rspcva 3014 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN0  /\  A. k  e.  NN0  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)  ->  ( ( A `  ( N  +  1 ) )  =/=  0  ->  ( N  +  1 )  <_  N ) )
875, 86sylan 458 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
( A `  ( N  +  1 ) )  =/=  0  -> 
( N  +  1 )  <_  N )
)
8887necon1bd 2639 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( -.  ( N  +  1 )  <_  N  ->  ( A `  ( N  +  1 ) )  =  0 ) )
8981, 88mpd 15 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A `  ( N  +  1 ) )  =  0 )
90 uzid 10460 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ZZ  ->  ( N  +  1 )  e.  ( ZZ>= `  ( N  +  1 ) ) )
9118, 90syl 16 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  (
ZZ>= `  ( N  + 
1 ) ) )
92 funfvima2 5937 . . . . . . . 8  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
( N  +  1 )  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( A `  ( N  +  1 ) )  e.  ( A "
( ZZ>= `  ( N  +  1 ) ) ) ) )
933, 12, 92syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( N  +  1 )  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  ( N  +  1
) )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
9491, 93mpd 15 . . . . . 6  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( A `  ( N  +  1
) )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) )
9594adantr 452 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A `  ( N  +  1 ) )  e.  ( A "
( ZZ>= `  ( N  +  1 ) ) ) )
9689, 95eqeltrrd 2483 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  0  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) ) )
9796snssd 3907 . . 3  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  { 0 }  C_  ( A " ( ZZ>= `  ( N  +  1 ) ) ) )
9877, 97eqssd 3329 . 2  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
9943, 98impbida 806 1  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670    C_ wss 3284   {csn 3778   class class class wbr 4176   `'ccnv 4840   dom cdm 4841   "cima 4844   Fun wfun 5411    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951    + caddc 8953    < clt 9080    <_ cle 9081   NN0cn0 10181   ZZcz 10242   ZZ>=cuz 10448
This theorem is referenced by:  elply2  20072  plyeq0lem  20086  coeeulem  20100  dgrlem  20105  dgrub2  20111  dgrlb  20112  coeeq2  20118  dgrle  20119  coeaddlem  20124  coemullem  20125  coe1termlem  20133  dgreq0  20140  coecj  20153  basellem2  20821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-n0 10182  df-z 10243  df-uz 10449
  Copyright terms: Public domain W3C validator