MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Unicode version

Theorem plyco0 19574
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem plyco0
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simprr 733 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( A `  k )  =/=  0
)
2 ffun 5391 . . . . . . . . . . . 12  |-  ( A : NN0 --> CC  ->  Fun 
A )
32adantl 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  Fun  A )
4 peano2nn0 10004 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
54adantr 451 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  NN0 )
6 eluznn0 10288 . . . . . . . . . . . . . . 15  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
76ex 423 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  NN0  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  NN0 ) )
85, 7syl 15 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  NN0 ) )
98ssrdv 3185 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ZZ>= `  ( N  +  1 ) )  C_  NN0 )
10 fdm 5393 . . . . . . . . . . . . 13  |-  ( A : NN0 --> CC  ->  dom 
A  =  NN0 )
1110adantl 452 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  dom  A  =  NN0 )
129, 11sseqtr4d 3215 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ZZ>= `  ( N  +  1 ) )  C_  dom  A )
13 funfvima2 5754 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
143, 12, 13syl2anc 642 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
1514ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
16 nn0z 10046 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1716adantr 451 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  e.  ZZ )
1817peano2zd 10120 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  ZZ )
1918ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( N  +  1 )  e.  ZZ )
20 nn0z 10046 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  ZZ )
2120ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  e.  ZZ )
22 eluz 10241 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  <->  ( N  +  1 )  <_ 
k ) )
2319, 21, 22syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  <-> 
( N  +  1 )  <_  k )
)
24 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
2524eleq2d 2350 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  <-> 
( A `  k
)  e.  { 0 } ) )
26 fvex 5539 . . . . . . . . . . 11  |-  ( A `
 k )  e. 
_V
2726elsnc 3663 . . . . . . . . . 10  |-  ( ( A `  k )  e.  { 0 }  <-> 
( A `  k
)  =  0 )
2825, 27syl6bb 252 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  <-> 
( A `  k
)  =  0 ) )
2915, 23, 283imtr3d 258 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( N  +  1 )  <_  k  ->  ( A `  k )  =  0 ) )
3029necon3ad 2482 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( ( A `  k )  =/=  0  ->  -.  ( N  +  1 )  <_  k ) )
311, 30mpd 14 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  -.  ( N  +  1 )  <_  k )
32 nn0re 9974 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  RR )
3332ad2antrl 708 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  e.  RR )
3418zred 10117 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  RR )
3534ad2antrr 706 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( N  +  1 )  e.  RR )
3633, 35ltnled 8966 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  <  ( N  +  1 )  <->  -.  ( N  +  1 )  <_ 
k ) )
3731, 36mpbird 223 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  <  ( N  +  1 ) )
3817ad2antrr 706 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  N  e.  ZZ )
39 zleltp1 10068 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
4021, 38, 39syl2anc 642 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  ( k  <_  N  <->  k  <  ( N  +  1 ) ) )
4137, 40mpbird 223 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  ( k  e.  NN0  /\  ( A `  k
)  =/=  0 ) )  ->  k  <_  N )
4241expr 598 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  A : NN0
--> CC )  /\  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )  /\  k  e.  NN0 )  -> 
( ( A `  k )  =/=  0  ->  k  <_  N )
)
4342ralrimiva 2626 . 2  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )  ->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )
44 simpr 447 . . . . . . . 8  |-  ( ( A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>=
`  ( N  + 
1 ) ) )  ->  n  e.  (
ZZ>= `  ( N  + 
1 ) ) )
45 eluznn0 10288 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN0  /\  n  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  n  e.  NN0 )
465, 44, 45syl2an 463 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  NN0 )
47 nn0re 9974 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
4847adantr 451 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  e.  RR )
4948adantr 451 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  e.  RR )
5034adantr 451 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  +  1 )  e.  RR )
5146nn0red 10019 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  RR )
5249ltp1d 9687 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  <  ( N  +  1 ) )
53 eluzle 10240 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_  n )
5453ad2antll 709 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  +  1 )  <_  n )
5549, 50, 51, 52, 54ltletrd 8976 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  N  <  n )
5649, 51ltnled 8966 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( N  <  n  <->  -.  n  <_  N ) )
5755, 56mpbid 201 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  -.  n  <_  N )
58 simprl 732 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )
59 fveq2 5525 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( A `  k )  =  ( A `  n ) )
6059neeq1d 2459 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( A `  k
)  =/=  0  <->  ( A `  n )  =/=  0 ) )
61 breq1 4026 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
k  <_  N  <->  n  <_  N ) )
6260, 61imbi12d 311 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  n
)  =/=  0  ->  n  <_  N ) ) )
6362rspcva 2882 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  A. k  e.  NN0  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)  ->  ( ( A `  n )  =/=  0  ->  n  <_  N ) )
6446, 58, 63syl2anc 642 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  (
( A `  n
)  =/=  0  ->  n  <_  N ) )
6564necon1bd 2514 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( -.  n  <_  N  -> 
( A `  n
)  =  0 ) )
6657, 65mpd 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  ( A `  n )  =  0 )
67 ffn 5389 . . . . . . . . 9  |-  ( A : NN0 --> CC  ->  A  Fn  NN0 )
6867ad2antlr 707 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  A  Fn  NN0 )
69 fniniseg 5646 . . . . . . . 8  |-  ( A  Fn  NN0  ->  ( n  e.  ( `' A " { 0 } )  <-> 
( n  e.  NN0  /\  ( A `  n
)  =  0 ) ) )
7068, 69syl 15 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  (
n  e.  ( `' A " { 0 } )  <->  ( n  e.  NN0  /\  ( A `
 n )  =  0 ) ) )
7146, 66, 70mpbir2and 888 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  ( A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N )  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )  ->  n  e.  ( `' A " { 0 } ) )
7271expr 598 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
n  e.  ( ZZ>= `  ( N  +  1
) )  ->  n  e.  ( `' A " { 0 } ) ) )
7372ssrdv 3185 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( ZZ>=
`  ( N  + 
1 ) )  C_  ( `' A " { 0 } ) )
74 funimass3 5641 . . . . . 6  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( N  + 
1 ) ) ) 
C_  { 0 }  <-> 
( ZZ>= `  ( N  +  1 ) ) 
C_  ( `' A " { 0 } ) ) )
753, 12, 74syl2anc 642 . . . . 5  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  C_  { 0 }  <->  ( ZZ>= `  ( N  +  1 ) )  C_  ( `' A " { 0 } ) ) )
7675adantr 451 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
( A " ( ZZ>=
`  ( N  + 
1 ) ) ) 
C_  { 0 }  <-> 
( ZZ>= `  ( N  +  1 ) ) 
C_  ( `' A " { 0 } ) ) )
7773, 76mpbird 223 . . 3  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  C_  { 0 } )
7848ltp1d 9687 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  N  <  ( N  +  1 ) )
7948, 34ltnled 8966 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  < 
( N  +  1 )  <->  -.  ( N  +  1 )  <_  N ) )
8078, 79mpbid 201 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  -.  ( N  +  1 )  <_  N )
8180adantr 451 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  -.  ( N  +  1
)  <_  N )
82 fveq2 5525 . . . . . . . . . . 11  |-  ( k  =  ( N  + 
1 )  ->  ( A `  k )  =  ( A `  ( N  +  1
) ) )
8382neeq1d 2459 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  (
( A `  k
)  =/=  0  <->  ( A `  ( N  +  1 ) )  =/=  0 ) )
84 breq1 4026 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  (
k  <_  N  <->  ( N  +  1 )  <_  N ) )
8583, 84imbi12d 311 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  ( N  +  1 ) )  =/=  0  -> 
( N  +  1 )  <_  N )
) )
8685rspcva 2882 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN0  /\  A. k  e.  NN0  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)  ->  ( ( A `  ( N  +  1 ) )  =/=  0  ->  ( N  +  1 )  <_  N ) )
875, 86sylan 457 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  (
( A `  ( N  +  1 ) )  =/=  0  -> 
( N  +  1 )  <_  N )
)
8887necon1bd 2514 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( -.  ( N  +  1 )  <_  N  ->  ( A `  ( N  +  1 ) )  =  0 ) )
8981, 88mpd 14 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A `  ( N  +  1 ) )  =  0 )
90 uzid 10242 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ZZ  ->  ( N  +  1 )  e.  ( ZZ>= `  ( N  +  1 ) ) )
9118, 90syl 15 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( N  + 
1 )  e.  (
ZZ>= `  ( N  + 
1 ) ) )
92 funfvima2 5754 . . . . . . . 8  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  A )  ->  (
( N  +  1 )  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( A `  ( N  +  1 ) )  e.  ( A "
( ZZ>= `  ( N  +  1 ) ) ) ) )
933, 12, 92syl2anc 642 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( N  +  1 )  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( A `  ( N  +  1
) )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) ) )
9491, 93mpd 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( A `  ( N  +  1
) )  e.  ( A " ( ZZ>= `  ( N  +  1
) ) ) )
9594adantr 451 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A `  ( N  +  1 ) )  e.  ( A "
( ZZ>= `  ( N  +  1 ) ) ) )
9689, 95eqeltrrd 2358 . . . 4  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  0  e.  ( A " ( ZZ>=
`  ( N  + 
1 ) ) ) )
9796snssd 3760 . . 3  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  { 0 }  C_  ( A " ( ZZ>= `  ( N  +  1 ) ) ) )
9877, 97eqssd 3196 . 2  |-  ( ( ( N  e.  NN0  /\  A : NN0 --> CC )  /\  A. k  e. 
NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) )  ->  ( A " ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
9943, 98impbida 805 1  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   {csn 3640   class class class wbr 4023   `'ccnv 4688   dom cdm 4689   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230
This theorem is referenced by:  elply2  19578  plyeq0lem  19592  coeeulem  19606  dgrlem  19611  dgrub2  19617  dgrlb  19618  coeeq2  19624  dgrle  19625  coeaddlem  19630  coemullem  19631  coe1termlem  19639  dgreq0  19646  coecj  19659  basellem2  20319
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231
  Copyright terms: Public domain W3C validator