MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Unicode version

Theorem plyeq0 20083
Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 20062 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1  |-  ( ph  ->  S  C_  CC )
plyeq0.2  |-  ( ph  ->  N  e.  NN0 )
plyeq0.3  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyeq0.4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyeq0.5  |-  ( ph  ->  0 p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
Assertion
Ref Expression
plyeq0  |-  ( ph  ->  A  =  ( NN0 
X.  { 0 } ) )
Distinct variable groups:    z, k, A    k, N, z    ph, k,
z    S, k, z

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
2 plyeq0.1 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
3 0cn 9040 . . . . . . . . . 10  |-  0  e.  CC
43a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  e.  CC )
54snssd 3903 . . . . . . . 8  |-  ( ph  ->  { 0 }  C_  CC )
62, 5unssd 3483 . . . . . . 7  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
7 cnex 9027 . . . . . . 7  |-  CC  e.  _V
8 ssexg 4309 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
96, 7, 8sylancl 644 . . . . . 6  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
10 nn0ex 10183 . . . . . 6  |-  NN0  e.  _V
11 elmapg 6990 . . . . . 6  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
129, 10, 11sylancl 644 . . . . 5  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
131, 12mpbid 202 . . . 4  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
14 ffn 5550 . . . 4  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
1513, 14syl 16 . . 3  |-  ( ph  ->  A  Fn  NN0 )
16 imadmrn 5174 . . . 4  |-  ( A
" dom  A )  =  ran  A
17 fdm 5554 . . . . . . . . 9  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
18 fimacnv 5821 . . . . . . . . 9  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  ( `' A " ( S  u.  { 0 } ) )  =  NN0 )
1917, 18eqtr4d 2439 . . . . . . . 8  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  =  ( `' A "
( S  u.  {
0 } ) ) )
2013, 19syl 16 . . . . . . 7  |-  ( ph  ->  dom  A  =  ( `' A " ( S  u.  { 0 } ) ) )
21 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =  (/) )  -> 
( `' A "
( S  \  {
0 } ) )  =  (/) )
222adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  ->  S  C_  CC )
23 plyeq0.2 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN0 )
2423adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  ->  N  e.  NN0 )
251adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
26 plyeq0.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
2726adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  -> 
( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
28 plyeq0.5 . . . . . . . . . . . . 13  |-  ( ph  ->  0 p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
2928adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  -> 
0 p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
30 eqid 2404 . . . . . . . . . . . 12  |-  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
31 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  -> 
( `' A "
( S  \  {
0 } ) )  =/=  (/) )
3222, 24, 25, 27, 29, 30, 31plyeq0lem 20082 . . . . . . . . . . 11  |-  -.  ( ph  /\  ( `' A " ( S  \  {
0 } ) )  =/=  (/) )
3332pm2.21i 125 . . . . . . . . . 10  |-  ( (
ph  /\  ( `' A " ( S  \  { 0 } ) )  =/=  (/) )  -> 
( `' A "
( S  \  {
0 } ) )  =  (/) )
3421, 33pm2.61dane 2645 . . . . . . . . 9  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =  (/) )
3534uneq1d 3460 . . . . . . . 8  |-  ( ph  ->  ( ( `' A " ( S  \  {
0 } ) )  u.  ( `' A " { 0 } ) )  =  ( (/)  u.  ( `' A " { 0 } ) ) )
36 undif1 3663 . . . . . . . . . 10  |-  ( ( S  \  { 0 } )  u.  {
0 } )  =  ( S  u.  {
0 } )
3736imaeq2i 5160 . . . . . . . . 9  |-  ( `' A " ( ( S  \  { 0 } )  u.  {
0 } ) )  =  ( `' A " ( S  u.  {
0 } ) )
38 imaundi 5243 . . . . . . . . 9  |-  ( `' A " ( ( S  \  { 0 } )  u.  {
0 } ) )  =  ( ( `' A " ( S 
\  { 0 } ) )  u.  ( `' A " { 0 } ) )
3937, 38eqtr3i 2426 . . . . . . . 8  |-  ( `' A " ( S  u.  { 0 } ) )  =  ( ( `' A "
( S  \  {
0 } ) )  u.  ( `' A " { 0 } ) )
40 un0 3612 . . . . . . . . 9  |-  ( ( `' A " { 0 } )  u.  (/) )  =  ( `' A " { 0 } )
41 uncom 3451 . . . . . . . . 9  |-  ( ( `' A " { 0 } )  u.  (/) )  =  ( (/)  u.  ( `' A " { 0 } ) )
4240, 41eqtr3i 2426 . . . . . . . 8  |-  ( `' A " { 0 } )  =  (
(/)  u.  ( `' A " { 0 } ) )
4335, 39, 423eqtr4g 2461 . . . . . . 7  |-  ( ph  ->  ( `' A "
( S  u.  {
0 } ) )  =  ( `' A " { 0 } ) )
4420, 43eqtrd 2436 . . . . . 6  |-  ( ph  ->  dom  A  =  ( `' A " { 0 } ) )
45 eqimss 3360 . . . . . 6  |-  ( dom 
A  =  ( `' A " { 0 } )  ->  dom  A 
C_  ( `' A " { 0 } ) )
4644, 45syl 16 . . . . 5  |-  ( ph  ->  dom  A  C_  ( `' A " { 0 } ) )
47 ffun 5552 . . . . . . 7  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  Fun  A )
4813, 47syl 16 . . . . . 6  |-  ( ph  ->  Fun  A )
49 ssid 3327 . . . . . 6  |-  dom  A  C_ 
dom  A
50 funimass3 5805 . . . . . 6  |-  ( ( Fun  A  /\  dom  A 
C_  dom  A )  ->  ( ( A " dom  A )  C_  { 0 }  <->  dom  A  C_  ( `' A " { 0 } ) ) )
5148, 49, 50sylancl 644 . . . . 5  |-  ( ph  ->  ( ( A " dom  A )  C_  { 0 }  <->  dom  A  C_  ( `' A " { 0 } ) ) )
5246, 51mpbird 224 . . . 4  |-  ( ph  ->  ( A " dom  A )  C_  { 0 } )
5316, 52syl5eqssr 3353 . . 3  |-  ( ph  ->  ran  A  C_  { 0 } )
54 df-f 5417 . . 3  |-  ( A : NN0 --> { 0 }  <->  ( A  Fn  NN0 
/\  ran  A  C_  { 0 } ) )
5515, 53, 54sylanbrc 646 . 2  |-  ( ph  ->  A : NN0 --> { 0 } )
56 c0ex 9041 . . 3  |-  0  e.  _V
5756fconst2 5907 . 2  |-  ( A : NN0 --> { 0 }  <->  A  =  ( NN0  X.  { 0 } ) )
5855, 57sylib 189 1  |-  ( ph  ->  A  =  ( NN0 
X.  { 0 } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    \ cdif 3277    u. cun 3278    C_ wss 3280   (/)c0 3588   {csn 3774    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076   NN0cn0 10177   ZZ>=cuz 10444   ...cfz 10999   ^cexp 11337   sum_csu 12434   0 pc0p 19514
This theorem is referenced by:  coeeulem  20096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-0p 19515
  Copyright terms: Public domain W3C validator