MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Unicode version

Theorem plyf 19580
Description: The polynomial is a function on the complexes. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )

Proof of Theorem plyf
Dummy variables  k 
a  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 19577 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
21simprbi 450 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
3 fzfid 11035 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( 0 ... n
)  e.  Fin )
4 plybss 19576 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
5 0cn 8831 . . . . . . . . . . . . 13  |-  0  e.  CC
65a1i 10 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  0  e.  CC )
76snssd 3760 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  { 0 }  C_  CC )
84, 7unssd 3351 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  ( S  u.  { 0 } ) 
C_  CC )
98ad2antrr 706 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  C_  CC )
109adantr 451 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( S  u.  { 0 } )  C_  CC )
11 simplrr 737 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
12 cnex 8818 . . . . . . . . . . . 12  |-  CC  e.  _V
13 ssexg 4160 . . . . . . . . . . . 12  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
149, 12, 13sylancl 643 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  e. 
_V )
15 nn0ex 9971 . . . . . . . . . . 11  |-  NN0  e.  _V
16 elmapg 6785 . . . . . . . . . . 11  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1714, 15, 16sylancl 643 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1811, 17mpbid 201 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a : NN0 --> ( S  u.  { 0 } ) )
19 elfznn0 10822 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
20 ffvelrn 5663 . . . . . . . . 9  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  (
a `  k )  e.  ( S  u.  {
0 } ) )
2118, 19, 20syl2an 463 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  ( S  u.  { 0 } ) )
2210, 21sseldd 3181 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  CC )
23 simpr 447 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  z  e.  CC )
24 expcl 11121 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
2523, 19, 24syl2an 463 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( z ^
k )  e.  CC )
2622, 25mulcld 8855 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( ( a `
 k )  x.  ( z ^ k
) )  e.  CC )
273, 26fsumcl 12206 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  -> 
sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) )  e.  CC )
28 eqid 2283 . . . . 5  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
2927, 28fmptd 5684 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) : CC --> CC )
30 feq1 5375 . . . 4  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  ->  ( F : CC --> CC  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) : CC --> CC ) )
3129, 30syl5ibrcom 213 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
3231rexlimdvva 2674 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
332, 32mpd 14 1  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   _Vcvv 2788    u. cun 3150    C_ wss 3152   {csn 3640    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   0cc0 8737    x. cmul 8742   NN0cn0 9965   ...cfz 10782   ^cexp 11104   sum_csu 12158  Polycply 19566
This theorem is referenced by:  plysub  19601  plyco  19623  0dgrb  19628  coe0  19637  coesub  19638  dgrsub  19653  dgrcolem1  19654  dgrcolem2  19655  dgrco  19656  plymul0or  19661  plyreres  19663  dvply2g  19665  dvnply2  19667  plycpn  19669  plydivlem3  19675  plydivlem4  19676  plydiveu  19678  plyremlem  19684  plyrem  19685  facth  19686  fta1lem  19687  fta1  19688  quotcan  19689  vieta1lem1  19690  vieta1lem2  19691  vieta1  19692  plyexmo  19693  elaa  19696  elqaalem3  19701  aannenlem1  19708  aalioulem2  19713  aalioulem3  19714  aalioulem4  19715  taylthlem2  19753  ftalem2  20311  ftalem3  20312  ftalem4  20313  ftalem5  20314  ftalem7  20316  basellem4  20321  basellem5  20322  mpaaeu  27355  rngunsnply  27378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ply 19570
  Copyright terms: Public domain W3C validator