MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Unicode version

Theorem plymullem 19614
Description: Lemma for plymul 19616. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyadd.m  |-  ( ph  ->  M  e.  NN0 )
plyadd.n  |-  ( ph  ->  N  e.  NN0 )
plyadd.a  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.b  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyadd.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyadd.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyadd.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
plymul.x  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymullem  |-  ( ph  ->  ( F  o F  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, k,
y, z, B    x, F, y, z    S, k, x, y, z    x, A, y, z    x, G, y, z    ph, k, x, y, z    k, M, z    k, N, z
Allowed substitution hints:    A( k)    F( k)    G( k)    M( x, y)    N( x, y)

Proof of Theorem plymullem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plyadd.2 . . . 4  |-  ( ph  ->  G  e.  (Poly `  S ) )
3 plyadd.m . . . 4  |-  ( ph  ->  M  e.  NN0 )
4 plyadd.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
5 plyadd.a . . . . . 6  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 19592 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
71, 6syl 15 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
8 0cn 8847 . . . . . . . . . . 11  |-  0  e.  CC
98a1i 10 . . . . . . . . . 10  |-  ( ph  ->  0  e.  CC )
109snssd 3776 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
117, 10unssd 3364 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
12 cnex 8834 . . . . . . . 8  |-  CC  e.  _V
13 ssexg 4176 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1411, 12, 13sylancl 643 . . . . . . 7  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
15 nn0ex 9987 . . . . . . 7  |-  NN0  e.  _V
16 elmapg 6801 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1714, 15, 16sylancl 643 . . . . . 6  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
185, 17mpbid 201 . . . . 5  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
19 fss 5413 . . . . 5  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  A : NN0 --> CC )
2018, 11, 19syl2anc 642 . . . 4  |-  ( ph  ->  A : NN0 --> CC )
21 plyadd.b . . . . . 6  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
22 elmapg 6801 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2314, 15, 22sylancl 643 . . . . . 6  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2421, 23mpbid 201 . . . . 5  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
25 fss 5413 . . . . 5  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  B : NN0 --> CC )
2624, 11, 25syl2anc 642 . . . 4  |-  ( ph  ->  B : NN0 --> CC )
27 plyadd.a2 . . . 4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
28 plyadd.b2 . . . 4  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
29 plyadd.f . . . 4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
30 plyadd.g . . . 4  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
311, 2, 3, 4, 20, 26, 27, 28, 29, 30plymullem1 19612 . . 3  |-  ( ph  ->  ( F  o F  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
323, 4nn0addcld 10038 . . . 4  |-  ( ph  ->  ( M  +  N
)  e.  NN0 )
33 eqid 2296 . . . . . . 7  |-  ( S  u.  { 0 } )  =  ( S  u.  { 0 } )
34 plyadd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
357, 33, 34un0addcl 10013 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  +  y )  e.  ( S  u.  { 0 } ) )
36 fzfid 11051 . . . . . 6  |-  ( ph  ->  ( 0 ... n
)  e.  Fin )
37 elfznn0 10838 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
38 ffvelrn 5679 . . . . . . . . 9  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
3918, 37, 38syl2an 463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
40 fznn0sub 10840 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
41 ffvelrn 5679 . . . . . . . . 9  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4224, 40, 41syl2an 463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4339, 42jca 518 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( B `
 ( n  -  k ) )  e.  ( S  u.  {
0 } ) ) )
44 plymul.x . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
457, 33, 44un0mulcl 10014 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  x.  y )  e.  ( S  u.  { 0 } ) )
4645caovclg 6028 . . . . . . 7  |-  ( (
ph  /\  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
4743, 46syldan 456 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
48 ssun2 3352 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
49 c0ex 8848 . . . . . . . . 9  |-  0  e.  _V
5049snss 3761 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
5148, 50mpbir 200 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
5251a1i 10 . . . . . 6  |-  ( ph  ->  0  e.  ( S  u.  { 0 } ) )
5311, 35, 36, 47, 52fsumcllem 12221 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5453adantr 451 . . . 4  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5511, 32, 54elplyd 19600 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
5631, 55eqeltrd 2370 . 2  |-  ( ph  ->  ( F  o F  x.  G )  e.  (Poly `  ( S  u.  { 0 } ) ) )
57 plyun0 19595 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
5856, 57syl6eleq 2386 1  |-  ( ph  ->  ( F  o F  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163    C_ wss 3165   {csn 3653    e. cmpt 4093   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092    ^m cmap 6788   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   NN0cn0 9981   ZZ>=cuz 10246   ...cfz 10798   ^cexp 11120   sum_csu 12174  Polycply 19582
This theorem is referenced by:  plymul  19616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ply 19586
  Copyright terms: Public domain W3C validator