MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem1 Unicode version

Theorem plymullem1 19612
Description: Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plymullem1  |-  ( ph  ->  ( F  o F  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
Distinct variable groups:    A, n    k, n, B    k, M, n    k, N, n    z,
k, ph, n
Allowed substitution hints:    A( z, k)    B( z)    S( z, k, n)    F( z, k, n)    G( z, k, n)    M( z)    N( z)

Proof of Theorem plymullem1
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 cnex 8834 . . . 4  |-  CC  e.  _V
21a1i 10 . . 3  |-  ( ph  ->  CC  e.  _V )
3 sumex 12176 . . . 4  |-  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V
43a1i 10 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  _V )
5 sumex 12176 . . . 4  |-  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V
65a1i 10 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  _V )
7 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
8 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
92, 4, 6, 7, 8offval2 6111 . 2  |-  ( ph  ->  ( F  o F  x.  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  x.  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
10 fveq2 5541 . . . . . . . 8  |-  ( m  =  n  ->  ( B `  m )  =  ( B `  n ) )
11 oveq2 5882 . . . . . . . 8  |-  ( m  =  n  ->  (
z ^ m )  =  ( z ^
n ) )
1210, 11oveq12d 5892 . . . . . . 7  |-  ( m  =  n  ->  (
( B `  m
)  x.  ( z ^ m ) )  =  ( ( B `
 n )  x.  ( z ^ n
) ) )
1312oveq2d 5890 . . . . . 6  |-  ( m  =  n  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  m )  x.  ( z ^
m ) ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) ) )
14 fveq2 5541 . . . . . . . 8  |-  ( m  =  ( n  -  k )  ->  ( B `  m )  =  ( B `  ( n  -  k
) ) )
15 oveq2 5882 . . . . . . . 8  |-  ( m  =  ( n  -  k )  ->  (
z ^ m )  =  ( z ^
( n  -  k
) ) )
1614, 15oveq12d 5892 . . . . . . 7  |-  ( m  =  ( n  -  k )  ->  (
( B `  m
)  x.  ( z ^ m ) )  =  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )
1716oveq2d 5890 . . . . . 6  |-  ( m  =  ( n  -  k )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  m )  x.  ( z ^
m ) ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  ( n  -  k
) )  x.  (
z ^ ( n  -  k ) ) ) ) )
18 elfznn0 10838 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  k  e.  NN0 )
19 plyaddlem.a . . . . . . . . . . . 12  |-  ( ph  ->  A : NN0 --> CC )
2019adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
21 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2220, 21sylan 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
23 expcl 11137 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
2423adantll 694 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
2522, 24mulcld 8871 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
2618, 25sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( M  +  N )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
27 elfznn0 10838 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( ( M  +  N )  -  k
) )  ->  n  e.  NN0 )
28 plyaddlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B : NN0 --> CC )
2928adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
30 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( B : NN0 --> CC  /\  n  e.  NN0 )  -> 
( B `  n
)  e.  CC )
3129, 30sylan 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  ( B `  n )  e.  CC )
32 expcl 11137 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  n  e.  NN0 )  -> 
( z ^ n
)  e.  CC )
3332adantll 694 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  (
z ^ n )  e.  CC )
3431, 33mulcld 8871 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
3527, 34sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
3626, 35anim12dan 810 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  (
k  e.  ( 0 ... ( M  +  N ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  e.  CC  /\  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC ) )
37 mulcl 8837 . . . . . . 7  |-  ( ( ( ( A `  k )  x.  (
z ^ k ) )  e.  CC  /\  ( ( B `  n )  x.  (
z ^ n ) )  e.  CC )  ->  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  e.  CC )
3836, 37syl 15 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  (
k  e.  ( 0 ... ( M  +  N ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
3913, 17, 38fsum0diag2 12261 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... ( M  +  N )
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( M  +  N )
) sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
40 plyaddlem.m . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
4140nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
4241ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  M  e.  CC )
43 plyaddlem.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN0 )
4443nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
4544ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  N  e.  CC )
46 elfznn0 10838 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
4746adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  NN0 )
4847nn0cnd 10036 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  CC )
4942, 45, 48addsubd 9194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  =  ( ( M  -  k )  +  N ) )
50 fznn0sub 10840 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... M )  ->  ( M  -  k )  e.  NN0 )
5150adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( M  -  k )  e.  NN0 )
52 nn0uz 10278 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
5351, 52syl6eleq 2386 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( M  -  k )  e.  ( ZZ>= `  0 )
)
5443nn0zd 10131 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
5554ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  N  e.  ZZ )
56 eluzadd 10272 . . . . . . . . . . . 12  |-  ( ( ( M  -  k
)  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( M  -  k
)  +  N )  e.  ( ZZ>= `  (
0  +  N ) ) )
5753, 55, 56syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  -  k
)  +  N )  e.  ( ZZ>= `  (
0  +  N ) ) )
5849, 57eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  e.  ( ZZ>= `  (
0  +  N ) ) )
5945addid2d 9029 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0  +  N )  =  N )
6059fveq2d 5545 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( ZZ>=
`  ( 0  +  N ) )  =  ( ZZ>= `  N )
)
6158, 60eleqtrd 2372 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  e.  ( ZZ>= `  N
) )
62 fzss2 10847 . . . . . . . . 9  |-  ( ( ( M  +  N
)  -  k )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... (
( M  +  N
)  -  k ) ) )
6361, 62syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0 ... N )  C_  ( 0 ... (
( M  +  N
)  -  k ) ) )
6446, 25sylan2 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
6564adantr 451 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
66 elfznn0 10838 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... N )  ->  n  e.  NN0 )
6766, 34sylan2 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... N
) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
6867adantlr 695 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  e.  CC )
6965, 68mulcld 8871 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
70 eldifn 3312 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  -.  n  e.  ( 0 ... N ) )
7170adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  -.  n  e.  ( 0 ... N
) )
72 eldifi 3311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )
7372, 27syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  n  e.  NN0 )
7473adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  NN0 )
75 peano2nn0 10020 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
7643, 75syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
7776, 52syl6eleq 2386 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
78 uzsplit 10871 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
7977, 78syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
8052, 79syl5eq 2340 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
81 ax-1cn 8811 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  CC
82 pncan 9073 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
8344, 81, 82sylancl 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
8483oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
8584uneq1d 3341 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
8680, 85eqtrd 2328 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
8786ad3antrrr 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  NN0  =  ( ( 0 ... N
)  u.  ( ZZ>= `  ( N  +  1
) ) ) )
8874, 87eleqtrd 2372 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )
89 elun 3329 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( n  e.  ( 0 ... N
)  \/  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
9088, 89sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( n  e.  ( 0 ... N
)  \/  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
9190ord 366 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( -.  n  e.  ( 0 ... N )  ->  n  e.  ( ZZ>= `  ( N  +  1
) ) ) )
9271, 91mpd 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
93 ffun 5407 . . . . . . . . . . . . . . . . . 18  |-  ( B : NN0 --> CC  ->  Fun 
B )
9428, 93syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Fun  B )
95 ssun2 3352 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
9695, 80syl5sseqr 3240 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
97 fdm 5409 . . . . . . . . . . . . . . . . . . 19  |-  ( B : NN0 --> CC  ->  dom 
B  =  NN0 )
9828, 97syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  B  =  NN0 )
9996, 98sseqtr4d 3228 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
100 funfvima2 5770 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
n  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  n )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
10194, 99, 100syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  n
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
102101ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( B `  n )  e.  ( B " ( ZZ>= `  ( N  +  1
) ) ) ) )
10392, 102mpd 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  e.  ( B " ( ZZ>= `  ( N  +  1
) ) ) )
104 plyaddlem.b2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
105104ad3antrrr 710 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
106103, 105eleqtrd 2372 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  e.  {
0 } )
107 elsni 3677 . . . . . . . . . . . . 13  |-  ( ( B `  n )  e.  { 0 }  ->  ( B `  n )  =  0 )
108106, 107syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  =  0 )
109108oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  =  ( 0  x.  ( z ^ n ) ) )
110 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  z  e.  CC )
111110, 73, 32syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( z ^ n )  e.  CC )
112111mul02d 9026 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( 0  x.  ( z ^
n ) )  =  0 )
113109, 112eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  =  0 )
114113oveq2d 5890 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  =  ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  0 ) )
11564adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
116115mul01d 9027 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  0 )  =  0 )
117114, 116eqtrd 2328 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  =  0 )
118 fzfid 11051 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0 ... ( ( M  +  N )  -  k ) )  e. 
Fin )
11963, 69, 117, 118fsumss 12214 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  sum_ n  e.  ( 0 ... N
) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) ( ( ( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) ) )
120119sumeq2dv 12192 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) ) )
121 fzfid 11051 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
122 fzfid 11051 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
123121, 122, 64, 67fsum2mul 12267 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) ) )
12441, 44addcomd 9030 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  N
)  =  ( N  +  M ) )
12543, 52syl6eleq 2386 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
12640nn0zd 10131 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
127 eluzadd 10272 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 0  +  M ) ) )
128125, 126, 127syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  M
)  e.  ( ZZ>= `  ( 0  +  M
) ) )
12941addid2d 9029 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  +  M
)  =  M )
130129fveq2d 5545 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( 0  +  M ) )  =  ( ZZ>= `  M )
)
131128, 130eleqtrd 2372 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  M
)  e.  ( ZZ>= `  M ) )
132124, 131eqeltrd 2370 . . . . . . . . 9  |-  ( ph  ->  ( M  +  N
)  e.  ( ZZ>= `  M ) )
133 fzss2 10847 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... ( M  +  N )
) )
134132, 133syl 15 . . . . . . . 8  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... ( M  +  N ) ) )
135134adantr 451 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... ( M  +  N )
) )
13664adantr 451 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
13735adantlr 695 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  e.  CC )
138136, 137mulcld 8871 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
139118, 138fsumcl 12222 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  e.  CC )
140 eldifn 3312 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
141140adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  -.  k  e.  ( 0 ... M
) )
142 eldifi 3311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... ( M  +  N )
) )
143142, 18syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
144143adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  NN0 )
145 peano2nn0 10020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
14640, 145syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
147146, 52syl6eleq 2386 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
148 uzsplit 10871 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
149147, 148syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
15052, 149syl5eq 2340 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
151 pncan 9073 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
15241, 81, 151sylancl 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
153152oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
154153uneq1d 3341 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
155150, 154eqtrd 2328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
156155ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  NN0  =  ( ( 0 ... M
)  u.  ( ZZ>= `  ( M  +  1
) ) ) )
157144, 156eleqtrd 2372 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  ( ( 0 ... M )  u.  ( ZZ>=
`  ( M  + 
1 ) ) ) )
158 elun 3329 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
159157, 158sylib 188 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
160159ord 366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( -.  k  e.  ( 0 ... M )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) ) )
161141, 160mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
162 ffun 5407 . . . . . . . . . . . . . . . . . . . 20  |-  ( A : NN0 --> CC  ->  Fun 
A )
16319, 162syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Fun  A )
164 ssun2 3352 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
165164, 150syl5sseqr 3240 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
166 fdm 5409 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A : NN0 --> CC  ->  dom 
A  =  NN0 )
16719, 166syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  A  =  NN0 )
168165, 167sseqtr4d 3228 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
169 funfvima2 5770 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
170163, 168, 169syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
171170ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( k  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( M  +  1
) ) ) ) )
172161, 171mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( M  +  1
) ) ) )
173 plyaddlem.a2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
174173ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A " ( ZZ>= `  ( M  +  1 ) ) )  =  { 0 } )
175172, 174eleqtrd 2372 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  e.  {
0 } )
176 elsni 3677 . . . . . . . . . . . . . . 15  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
177175, 176syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  =  0 )
178177oveq1d 5889 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  ( 0  x.  ( z ^ k ) ) )
179143, 24sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( z ^ k )  e.  CC )
180179mul02d 9026 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
181178, 180eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  0 )
182181adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  0 )
183182oveq1d 5889 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  ( 0  x.  ( ( B `  n )  x.  (
z ^ n ) ) ) )
18435adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
185184mul02d 9026 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
0  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  0 )
186183, 185eqtrd 2328 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  0 )
187186sumeq2dv 12192 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) 0 )
188 fzfid 11051 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( 0 ... ( ( M  +  N )  -  k ) )  e. 
Fin )
189188olcd 382 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( (
0 ... ( ( M  +  N )  -  k ) )  C_  ( ZZ>= `  0 )  \/  ( 0 ... (
( M  +  N
)  -  k ) )  e.  Fin )
)
190 sumz 12211 . . . . . . . . 9  |-  ( ( ( 0 ... (
( M  +  N
)  -  k ) )  C_  ( ZZ>= ` 
0 )  \/  (
0 ... ( ( M  +  N )  -  k ) )  e. 
Fin )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) 0  =  0 )
191189, 190syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) 0  =  0 )
192187, 191eqtrd 2328 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  0 )
193 fzfid 11051 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... ( M  +  N ) )  e. 
Fin )
194135, 139, 192, 193fsumss 12214 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N )
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) ) )
195120, 123, 1943eqtr3d 2336 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N ) ) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) ( ( ( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) ) )
196 fzfid 11051 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  (
0 ... n )  e. 
Fin )
197 elfznn0 10838 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( M  +  N
) )  ->  n  e.  NN0 )
198197, 33sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  (
z ^ n )  e.  CC )
199 simpll 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ph )
200 elfznn0 10838 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
20119, 21sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
202199, 200, 201syl2an 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( A `  k )  e.  CC )
203 fznn0sub 10840 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
204 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( B : NN0 --> CC  /\  ( n  -  k
)  e.  NN0 )  ->  ( B `  (
n  -  k ) )  e.  CC )
20528, 204sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  CC )
206199, 203, 205syl2an 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( B `  ( n  -  k
) )  e.  CC )
207202, 206mulcld 8871 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  CC )
208196, 198, 207fsummulc1 12263 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ( sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( z ^
n ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
209 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  z  e.  CC )
210209, 200, 23syl2an 463 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ k )  e.  CC )
211 expcl 11137 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  ( n  -  k
)  e.  NN0 )  ->  ( z ^ (
n  -  k ) )  e.  CC )
212209, 203, 211syl2an 463 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( n  -  k ) )  e.  CC )
213202, 210, 206, 212mul4d 9040 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
( z ^ k
)  x.  ( z ^ ( n  -  k ) ) ) ) )
214209adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  z  e.  CC )
215203adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( n  -  k )  e. 
NN0 )
216200adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
217214, 215, 216expaddd 11263 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( k  +  ( n  -  k
) ) )  =  ( ( z ^
k )  x.  (
z ^ ( n  -  k ) ) ) )
218216nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  CC )
219197ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  n  e.  NN0 )
220219nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  n  e.  CC )
221218, 220pncan3d 9176 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( k  +  ( n  -  k ) )  =  n )
222221oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( k  +  ( n  -  k
) ) )  =  ( z ^ n
) )
223217, 222eqtr3d 2330 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
z ^ k )  x.  ( z ^
( n  -  k
) ) )  =  ( z ^ n
) )
224223oveq2d 5890 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( ( z ^ k )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
225213, 224eqtrd 2328 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
226225sumeq2dv 12192 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  ( n  -  k
) )  x.  (
z ^ ( n  -  k ) ) ) )  =  sum_ k  e.  ( 0 ... n ) ( ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )
227208, 226eqtr4d 2331 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ( sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( z ^
n ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
228227sumeq2dv 12192 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  sum_ n  e.  ( 0 ... ( M  +  N )
) sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
22939, 195, 2283eqtr4rd 2339 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) ) )
230 fveq2 5541 . . . . . . 7  |-  ( n  =  k  ->  ( B `  n )  =  ( B `  k ) )
231 oveq2 5882 . . . . . . 7  |-  ( n  =  k  ->  (
z ^ n )  =  ( z ^
k ) )
232230, 231oveq12d 5892 . . . . . 6  |-  ( n  =  k  ->  (
( B `  n
)  x.  ( z ^ n ) )  =  ( ( B `
 k )  x.  ( z ^ k
) ) )
233232cbvsumv 12185 . . . . 5  |-  sum_ n  e.  ( 0 ... N
) ( ( B `
 n )  x.  ( z ^ n
) )  =  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) )
234233oveq2i 5885 . . . 4  |-  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) )  =  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  x.  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) )
235229, 234syl6eq 2344 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) ) )
236235mpteq2dva 4122 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) ) ) )
2379, 236eqtr4d 2331 1  |-  ( ph  ->  ( F  o F  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163    C_ wss 3165   {csn 3653    e. cmpt 4093   dom cdm 4705   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   Fincfn 6879   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   ^cexp 11120   sum_csu 12174  Polycply 19582
This theorem is referenced by:  plymullem  19614  coemullem  19647
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175
  Copyright terms: Public domain W3C validator