MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyval Structured version   Unicode version

Theorem plyval 20114
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Distinct variable group:    k, a, n, z, f, S

Proof of Theorem plyval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnex 9073 . . 3  |-  CC  e.  _V
21elpw2 4366 . 2  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3 uneq1 3496 . . . . . . 7  |-  ( x  =  S  ->  (
x  u.  { 0 } )  =  ( S  u.  { 0 } ) )
43oveq1d 6098 . . . . . 6  |-  ( x  =  S  ->  (
( x  u.  {
0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 ) )
54rexeqdv 2913 . . . . 5  |-  ( x  =  S  ->  ( E. a  e.  (
( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
65rexbidv 2728 . . . 4  |-  ( x  =  S  ->  ( E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
76abbidv 2552 . . 3  |-  ( x  =  S  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
8 df-ply 20109 . . 3  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
9 nn0ex 10229 . . . 4  |-  NN0  e.  _V
10 ovex 6108 . . . 4  |-  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V
119, 10ab2rexex 6228 . . 3  |-  { f  |  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V
127, 8, 11fvmpt 5808 . 2  |-  ( S  e.  ~P CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
132, 12sylbir 206 1  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708    u. cun 3320    C_ wss 3322   ~Pcpw 3801   {csn 3816    e. cmpt 4268   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   CCcc 8990   0cc0 8992    x. cmul 8997   NN0cn0 10223   ...cfz 11045   ^cexp 11384   sum_csu 12481  Polycply 20105
This theorem is referenced by:  elply  20116  plyss  20120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-i2m1 9060  ax-1ne0 9061  ax-rrecex 9064  ax-cnre 9065
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-recs 6635  df-rdg 6670  df-nn 10003  df-n0 10224  df-ply 20109
  Copyright terms: Public domain W3C validator