Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.42 Structured version   Unicode version

Theorem pm10.42 27527
Description: Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.42  |-  ( ( E. x ph  \/  E. x ps )  <->  E. x
( ph  \/  ps ) )

Proof of Theorem pm10.42
StepHypRef Expression
1 19.43 1615 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
21bicomi 194 1  |-  ( ( E. x ph  \/  E. x ps )  <->  E. x
( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358   E.wex 1550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-ex 1551
  Copyright terms: Public domain W3C validator