Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm11.07 Unicode version

Theorem pm11.07 2054
 Description: Theorem *11.07 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm11.07
Distinct variable groups:   ,,,   ,,
Allowed substitution hint:   ()

Proof of Theorem pm11.07
StepHypRef Expression
1 a9ev 1637 . . . . . . 7
2 a9ev 1637 . . . . . . 7
31, 2pm3.2i 441 . . . . . 6
4 a9ev 1637 . . . . . . 7
5 a9ev 1637 . . . . . . 7
64, 5pm3.2i 441 . . . . . 6
73, 62th 230 . . . . 5
8 eeanv 1854 . . . . 5
9 eeanv 1854 . . . . 5
107, 8, 93bitr4i 268 . . . 4
1110anbi1i 676 . . 3
12 19.41vv 1843 . . 3
13 19.41vv 1843 . . 3
1411, 12, 133bitr4i 268 . 2
15 2sb5 2051 . 2
16 2sb5 2051 . 2
1714, 15, 163bitr4i 268 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358  wex 1528  wsb 1629 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630
 Copyright terms: Public domain W3C validator