Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.57 Unicode version

Theorem pm11.57 27588
Description: Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.57  |-  ( A. x ph  <->  A. x A. y
( ph  /\  [ y  /  x ] ph ) )
Distinct variable group:    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem pm11.57
StepHypRef Expression
1 nfv 1605 . . . . 5  |-  F/ y
ph
21nfal 1766 . . . 4  |-  F/ y A. x ph
3 sp 1716 . . . . 5  |-  ( A. x ph  ->  ph )
4 stdpc4 1964 . . . . 5  |-  ( A. x ph  ->  [ y  /  x ] ph )
53, 4jca 518 . . . 4  |-  ( A. x ph  ->  ( ph  /\ 
[ y  /  x ] ph ) )
62, 5alrimi 1745 . . 3  |-  ( A. x ph  ->  A. y
( ph  /\  [ y  /  x ] ph ) )
76a5i 1758 . 2  |-  ( A. x ph  ->  A. x A. y ( ph  /\  [ y  /  x ] ph ) )
8 simpl 443 . . . 4  |-  ( (
ph  /\  [ y  /  x ] ph )  ->  ph )
98sps 1739 . . 3  |-  ( A. y ( ph  /\  [ y  /  x ] ph )  ->  ph )
109alimi 1546 . 2  |-  ( A. x A. y ( ph  /\ 
[ y  /  x ] ph )  ->  A. x ph )
117, 10impbii 180 1  |-  ( A. x ph  <->  A. x A. y
( ph  /\  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1527   [wsb 1629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator