MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm110.643ALT Unicode version

Theorem pm110.643ALT 7984
Description: Alternate proof of pm110.643 7983. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pm110.643ALT  |-  ( 1o 
+c  1o )  ~~  2o

Proof of Theorem pm110.643ALT
StepHypRef Expression
1 1on 6660 . . 3  |-  1o  e.  On
21onordi 4619 . . . 4  |-  Ord  1o
3 ordirr 4533 . . . 4  |-  ( Ord 
1o  ->  -.  1o  e.  1o )
42, 3ax-mp 8 . . 3  |-  -.  1o  e.  1o
5 cda1en 7981 . . 3  |-  ( ( 1o  e.  On  /\  -.  1o  e.  1o )  ->  ( 1o  +c  1o )  ~~  suc  1o )
61, 4, 5mp2an 654 . 2  |-  ( 1o 
+c  1o )  ~~  suc  1o
7 df-2o 6654 . 2  |-  2o  =  suc  1o
86, 7breqtrri 4171 1  |-  ( 1o 
+c  1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1717   class class class wbr 4146   Ord word 4514   Oncon0 4515   suc csuc 4517  (class class class)co 6013   1oc1o 6646   2oc2o 6647    ~~ cen 7035    +c ccda 7973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-suc 4521  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1o 6653  df-2o 6654  df-er 6834  df-en 7039  df-cda 7974
  Copyright terms: Public domain W3C validator