Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.13a Unicode version

Theorem pm13.13a 27607
Description: One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.13a  |-  ( (
ph  /\  x  =  A )  ->  [. A  /  x ]. ph )

Proof of Theorem pm13.13a
StepHypRef Expression
1 sbceq1a 3001 . 2  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
21biimpac 472 1  |-  ( (
ph  /\  x  =  A )  ->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   [.wsbc 2991
This theorem is referenced by:  pm13.194  27612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-sbc 2992
  Copyright terms: Public domain W3C validator