Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.24 Unicode version

Theorem pm14.24 27735
Description: Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
pm14.24  |-  ( E! x ph  ->  A. y
( [. y  /  x ]. ph  <->  y  =  ( iota x ph )
) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem pm14.24
StepHypRef Expression
1 nfeu1 2166 . . . . 5  |-  F/ x E! x ph
2 nfsbc1v 3023 . . . . 5  |-  F/ x [. y  /  x ]. ph
3 pm14.12 27724 . . . . . . . . . 10  |-  ( E! x ph  ->  A. x A. y ( ( ph  /\ 
[. y  /  x ]. ph )  ->  x  =  y ) )
4319.21bbi 1807 . . . . . . . . 9  |-  ( E! x ph  ->  (
( ph  /\  [. y  /  x ]. ph )  ->  x  =  y ) )
54ancomsd 440 . . . . . . . 8  |-  ( E! x ph  ->  (
( [. y  /  x ]. ph  /\  ph )  ->  x  =  y ) )
65expdimp 426 . . . . . . 7  |-  ( ( E! x ph  /\  [. y  /  x ]. ph )  ->  ( ph  ->  x  =  y ) )
7 pm13.13b 27711 . . . . . . . . . 10  |-  ( (
[. y  /  x ]. ph  /\  x  =  y )  ->  ph )
87expcom 424 . . . . . . . . 9  |-  ( x  =  y  ->  ( [. y  /  x ]. ph  ->  ph ) )
98com12 27 . . . . . . . 8  |-  ( [. y  /  x ]. ph  ->  ( x  =  y  ->  ph ) )
109adantl 452 . . . . . . 7  |-  ( ( E! x ph  /\  [. y  /  x ]. ph )  ->  ( x  =  y  ->  ph )
)
116, 10impbid 183 . . . . . 6  |-  ( ( E! x ph  /\  [. y  /  x ]. ph )  ->  ( ph  <->  x  =  y ) )
1211ex 423 . . . . 5  |-  ( E! x ph  ->  ( [. y  /  x ]. ph  ->  ( ph  <->  x  =  y ) ) )
131, 2, 12alrimd 1761 . . . 4  |-  ( E! x ph  ->  ( [. y  /  x ]. ph  ->  A. x
( ph  <->  x  =  y
) ) )
14 iotaval 5246 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
1514eqcomd 2301 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
1613, 15syl6 29 . . 3  |-  ( E! x ph  ->  ( [. y  /  x ]. ph  ->  y  =  ( iota x ph )
) )
17 iota4 5253 . . . 4  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
18 dfsbcq 3006 . . . 4  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  x ]. ph  <->  [. ( iota
x ph )  /  x ]. ph ) )
1917, 18syl5ibrcom 213 . . 3  |-  ( E! x ph  ->  (
y  =  ( iota
x ph )  ->  [. y  /  x ]. ph )
)
2016, 19impbid 183 . 2  |-  ( E! x ph  ->  ( [. y  /  x ]. ph  <->  y  =  ( iota x ph )
) )
2120alrimiv 1621 1  |-  ( E! x ph  ->  A. y
( [. y  /  x ]. ph  <->  y  =  ( iota x ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632   E!weu 2156   [.wsbc 3004   iotacio 5233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-sbc 3005  df-un 3170  df-sn 3659  df-pr 3660  df-uni 3844  df-iota 5235
  Copyright terms: Public domain W3C validator