MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.04 Structured version   Unicode version

Theorem pm2.04 78
Description: Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Sep-2012.)
Assertion
Ref Expression
pm2.04  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )

Proof of Theorem pm2.04
StepHypRef Expression
1 id 20 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch ) ) )
21com23 74 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  com34  79  com45  85  bi2.04  351  merco2  1510  ralcom3  2873  rexrsb  27923  syl5imp  28595  com3rgbi  28597  syl5impVD  28975  simplbi2comgVD  29000  19.41rgVD  29014  a9e2eqVD  29019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator