MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.24d Unicode version

Theorem pm2.24d 135
Description: Deduction version of pm2.24 101. (Contributed by NM, 30-Jan-2006.)
Hypothesis
Ref Expression
pm2.24d.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
pm2.24d  |-  ( ph  ->  ( -.  ps  ->  ch ) )

Proof of Theorem pm2.24d
StepHypRef Expression
1 pm2.24d.1 . . 3  |-  ( ph  ->  ps )
21a1d 22 . 2  |-  ( ph  ->  ( -.  ch  ->  ps ) )
32con1d 116 1  |-  ( ph  ->  ( -.  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  pm2.5  144  asymref2  5060  xpexr  5114  reldmtpos  6242  abianfp  6471  zeo  10097  rpneg  10383  xrlttri  10473  difreicc  10767  gsumbagdiag  16122  psrass1lem  16123  cfinufil  17623  chirredi  22974  amosym1  24865  wl-adnestantd  24908  bwt2  25592  gsumcom3fi  27455  cdleme32e  30634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator