MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.24i Unicode version

Theorem pm2.24i 136
Description: Inference version of pm2.24 101. (Contributed by NM, 20-Aug-2001.)
Hypothesis
Ref Expression
pm2.24i.1  |-  ph
Assertion
Ref Expression
pm2.24i  |-  ( -. 
ph  ->  ps )

Proof of Theorem pm2.24i
StepHypRef Expression
1 pm2.24i.1 . . 3  |-  ph
21a1i 10 . 2  |-  ( -. 
ps  ->  ph )
32con1i 121 1  |-  ( -. 
ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  orci  379  niabn  917  ax12dgen1  1711  negsym1  24928  wl-adnestant  24978  nbgra0nb  28278  nbgranself  28283  frgra3vlem1  28424  frgra3vlem2  28425  3vfriswmgralem  28428
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator