MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.26 Unicode version

Theorem pm2.26 853
Description: Theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.26  |-  ( -. 
ph  \/  ( ( ph  ->  ps )  ->  ps ) )

Proof of Theorem pm2.26
StepHypRef Expression
1 pm2.27 35 . 2  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)
21imori 402 1  |-  ( -. 
ph  \/  ( ( ph  ->  ps )  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator