MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.53 Unicode version

Theorem pm2.53 362
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.53  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.53
StepHypRef Expression
1 df-or 359 . 2  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
21biimpi 186 1  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem is referenced by:  jaoi  368  orel1  371  pm2.63  763  pm2.8  823  mtp-or  1526  19.33b  1595  soxp  6228  iccpnfcnv  18442  elpreq  23188  xlt2addrd  23253  xrge0iifcnv  23315  expdioph  27116  pm10.57  27566  stoweidlem39  27788  vk15.4j  28291  vk15.4jVD  28690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator