MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61dda Unicode version

Theorem pm2.61dda 768
Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
pm2.61dda.1  |-  ( (
ph  /\  -.  ps )  ->  th )
pm2.61dda.2  |-  ( (
ph  /\  -.  ch )  ->  th )
pm2.61dda.3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
pm2.61dda  |-  ( ph  ->  th )

Proof of Theorem pm2.61dda
StepHypRef Expression
1 pm2.61dda.3 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
21anassrs 629 . . 3  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
3 pm2.61dda.2 . . . 4  |-  ( (
ph  /\  -.  ch )  ->  th )
43adantlr 695 . . 3  |-  ( ( ( ph  /\  ps )  /\  -.  ch )  ->  th )
52, 4pm2.61dan 766 . 2  |-  ( (
ph  /\  ps )  ->  th )
6 pm2.61dda.1 . 2  |-  ( (
ph  /\  -.  ps )  ->  th )
75, 6pm2.61dan 766 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358
This theorem is referenced by:  lhpexle1lem  30818  lclkrlem2x  32342
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator