MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.1 Unicode version

Theorem pm3.1 484
Description: Theorem *3.1 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.1  |-  ( (
ph  /\  ps )  ->  -.  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm3.1
StepHypRef Expression
1 anor 475 . 2  |-  ( (
ph  /\  ps )  <->  -.  ( -.  ph  \/  -.  ps ) )
21biimpi 186 1  |-  ( (
ph  /\  ps )  ->  -.  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358
This theorem is referenced by:  pm3.14  488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator