MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.12 Unicode version

Theorem pm3.12 486
Description: Theorem *3.12 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.12  |-  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) )

Proof of Theorem pm3.12
StepHypRef Expression
1 pm3.11 485 . 2  |-  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) )
21orri 365 1  |-  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator