MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Unicode version

Theorem pm3.2ni 828
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1  |-  -.  ph
pm3.2ni.2  |-  -.  ps
Assertion
Ref Expression
pm3.2ni  |-  -.  ( ph  \/  ps )

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2  |-  -.  ph
2 id 20 . . 3  |-  ( ph  ->  ph )
3 pm3.2ni.2 . . . 4  |-  -.  ps
43pm2.21i 125 . . 3  |-  ( ps 
->  ph )
52, 4jaoi 369 . 2  |-  ( (
ph  \/  ps )  ->  ph )
61, 5mto 169 1  |-  -.  ( ph  \/  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 358
This theorem is referenced by:  snsn0non  4692  canthp1lem2  8520  recgt0ii  9908  xrltnr  10712  pnfnlt  10717  nltmnf  10718  lhop  19892  3pm3.2ni  25159  nosgnn0  25605  axlowdimlem13  25885  dandysum2p2e4  27910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360
  Copyright terms: Public domain W3C validator