MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.79 Unicode version

Theorem pm4.79 566
Description: Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.)
Assertion
Ref Expression
pm4.79  |-  ( ( ( ps  ->  ph )  \/  ( ch  ->  ph )
)  <->  ( ( ps 
/\  ch )  ->  ph )
)

Proof of Theorem pm4.79
StepHypRef Expression
1 id 19 . . 3  |-  ( ( ps  ->  ph )  -> 
( ps  ->  ph )
)
2 id 19 . . 3  |-  ( ( ch  ->  ph )  -> 
( ch  ->  ph )
)
31, 2jaoa 496 . 2  |-  ( ( ( ps  ->  ph )  \/  ( ch  ->  ph )
)  ->  ( ( ps  /\  ch )  ->  ph ) )
4 simplim 143 . . . 4  |-  ( -.  ( ps  ->  ph )  ->  ps )
5 pm3.3 431 . . . 4  |-  ( ( ( ps  /\  ch )  ->  ph )  ->  ( ps  ->  ( ch  ->  ph ) ) )
64, 5syl5 28 . . 3  |-  ( ( ( ps  /\  ch )  ->  ph )  ->  ( -.  ( ps  ->  ph )  ->  ( ch  ->  ph )
) )
76orrd 367 . 2  |-  ( ( ( ps  /\  ch )  ->  ph )  ->  (
( ps  ->  ph )  \/  ( ch  ->  ph )
) )
83, 7impbii 180 1  |-  ( ( ( ps  ->  ph )  \/  ( ch  ->  ph )
)  <->  ( ( ps 
/\  ch )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358
This theorem is referenced by:  ax12conj2  29108  a12study8  29119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator