MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.83 Unicode version

Theorem pm4.83 895
Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.83  |-  ( ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) )  <->  ps )

Proof of Theorem pm4.83
StepHypRef Expression
1 exmid 404 . . 3  |-  ( ph  \/  -.  ph )
21a1bi 327 . 2  |-  ( ps  <->  ( ( ph  \/  -.  ph )  ->  ps )
)
3 jaob 758 . 2  |-  ( ( ( ph  \/  -.  ph )  ->  ps )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) ) )
42, 3bitr2i 241 1  |-  ( ( ( ph  ->  ps )  /\  ( -.  ph  ->  ps ) )  <->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358
This theorem is referenced by:  dmdbr5ati  23002  cvlsupr3  29534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator