MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.6 Unicode version

Theorem pm5.6 878
Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.)
Assertion
Ref Expression
pm5.6  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( ps  \/  ch ) ) )

Proof of Theorem pm5.6
StepHypRef Expression
1 impexp 433 . 2  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( -.  ps  ->  ch ) ) )
2 df-or 359 . . 3  |-  ( ( ps  \/  ch )  <->  ( -.  ps  ->  ch ) )
32imbi2i 303 . 2  |-  ( (
ph  ->  ( ps  \/  ch ) )  <->  ( ph  ->  ( -.  ps  ->  ch ) ) )
41, 3bitr4i 243 1  |-  ( ( ( ph  /\  -.  ps )  ->  ch )  <->  (
ph  ->  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358
This theorem is referenced by:  ssundif  3537  brdom3  8153  grothprim  8456  ballotlem2  23047  ballotlemfc0  23051  ballotlemfcc  23052  eliccelico  23270  elicoelioo  23271  elicc3  26228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator