Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Unicode version

Theorem pm54.43 7633
 Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2. Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 7601), so that their means, in our notation, which is the same as by pm54.43lem 7632. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.) Theorem pm110.643 7803 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43

Proof of Theorem pm54.43
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6486 . . . . . . . 8
21elexi 2797 . . . . . . 7
32ensn1 6925 . . . . . 6
43ensymi 6911 . . . . 5
5 entr 6913 . . . . 5
64, 5mpan2 652 . . . 4
71onirri 4499 . . . . . . 7
8 disjsn 3693 . . . . . . 7
97, 8mpbir 200 . . . . . 6
10 unen 6943 . . . . . 6
119, 10mpanr2 665 . . . . 5
1211ex 423 . . . 4
136, 12sylan2 460 . . 3
14 df-2o 6480 . . . . 5
15 df-suc 4398 . . . . 5
1614, 15eqtri 2303 . . . 4
1716breq2i 4031 . . 3
1813, 17syl6ibr 218 . 2
19 en1 6928 . . 3
20 en1 6928 . . 3
21 unidm 3318 . . . . . . . . . . . . . 14
22 sneq 3651 . . . . . . . . . . . . . . 15
2322uneq2d 3329 . . . . . . . . . . . . . 14
2421, 23syl5reqr 2330 . . . . . . . . . . . . 13
25 vex 2791 . . . . . . . . . . . . . . 15
2625ensn1 6925 . . . . . . . . . . . . . 14
27 1sdom2 7061 . . . . . . . . . . . . . 14
28 ensdomtr 6997 . . . . . . . . . . . . . 14
2926, 27, 28mp2an 653 . . . . . . . . . . . . 13
3024, 29syl6eqbr 4060 . . . . . . . . . . . 12
31 sdomnen 6890 . . . . . . . . . . . 12
3230, 31syl 15 . . . . . . . . . . 11
3332necon2ai 2491 . . . . . . . . . 10
34 disjsn2 3694 . . . . . . . . . 10
3533, 34syl 15 . . . . . . . . 9
3635a1i 10 . . . . . . . 8
37 uneq12 3324 . . . . . . . . 9
3837breq1d 4033 . . . . . . . 8
39 ineq12 3365 . . . . . . . . 9
4039eqeq1d 2291 . . . . . . . 8
4136, 38, 403imtr4d 259 . . . . . . 7
4241ex 423 . . . . . 6
4342exlimdv 1664 . . . . 5
4443exlimiv 1666 . . . 4
4544imp 418 . . 3
4619, 20, 45syl2anb 465 . 2
4718, 46impbid 183 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wa 358  wex 1528   wceq 1623   wcel 1684   wne 2446   cun 3150   cin 3151  c0 3455  csn 3640   class class class wbr 4023  con0 4392   csuc 4394  c1o 6472  c2o 6473   cen 6860   csdm 6862 This theorem is referenced by:  pr2nelem  7634  pm110.643  7803  isprm2lem  12765 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-2o 6480  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866
 Copyright terms: Public domain W3C validator