Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapeq0 Unicode version

Theorem pmapeq0 29955
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapeq0.b  |-  B  =  ( Base `  K
)
pmapeq0.z  |-  .0.  =  ( 0. `  K )
pmapeq0.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapeq0  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  =  (/)  <->  X  =  .0.  ) )

Proof of Theorem pmapeq0
StepHypRef Expression
1 hlatl 29550 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
21adantr 451 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  K  e.  AtLat )
3 pmapeq0.z . . . . 5  |-  .0.  =  ( 0. `  K )
4 pmapeq0.m . . . . 5  |-  M  =  ( pmap `  K
)
53, 4pmap0 29954 . . . 4  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
62, 5syl 15 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  .0.  )  =  (/) )
76eqeq2d 2294 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  =  ( M `  .0.  )  <->  ( M `  X )  =  (/) ) )
8 hlop 29552 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
98adantr 451 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  K  e.  OP )
10 pmapeq0.b . . . . 5  |-  B  =  ( Base `  K
)
1110, 3op0cl 29374 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
129, 11syl 15 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  .0.  e.  B )
1310, 4pmap11 29951 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  .0.  e.  B )  -> 
( ( M `  X )  =  ( M `  .0.  )  <->  X  =  .0.  ) )
1412, 13mpd3an3 1278 . 2  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  =  ( M `  .0.  )  <->  X  =  .0.  ) )
157, 14bitr3d 246 1  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  =  (/)  <->  X  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   (/)c0 3455   ` cfv 5255   Basecbs 13148   0.cp0 14143   OPcops 29362   AtLatcal 29454   HLchlt 29540   pmapcpmap 29686
This theorem is referenced by:  pmapjat1  30042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-pmap 29693
  Copyright terms: Public domain W3C validator