Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Unicode version

Theorem pmapglbx 29331
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 29332, where we read  S as  S ( i ). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b  |-  B  =  ( Base `  K
)
pmapglb.g  |-  G  =  ( glb `  K
)
pmapglb.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglbx  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
Distinct variable groups:    y, i, B    i, I, y    i, K, y    y, S
Allowed substitution hints:    S( i)    G( y, i)    M( y, i)

Proof of Theorem pmapglbx
Dummy variables  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 28921 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
21ad2antrr 706 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  K  e.  CLat )
3 pmapglb.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
4 eqid 2283 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
53, 4atbase 28852 . . . . . . . 8  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
65adantl 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  p  e.  B
)
7 r19.29 2683 . . . . . . . . . . 11  |-  ( ( A. i  e.  I  S  e.  B  /\  E. i  e.  I  y  =  S )  ->  E. i  e.  I 
( S  e.  B  /\  y  =  S
) )
8 eleq1a 2352 . . . . . . . . . . . . 13  |-  ( S  e.  B  ->  (
y  =  S  -> 
y  e.  B ) )
98imp 418 . . . . . . . . . . . 12  |-  ( ( S  e.  B  /\  y  =  S )  ->  y  e.  B )
109rexlimivw 2663 . . . . . . . . . . 11  |-  ( E. i  e.  I  ( S  e.  B  /\  y  =  S )  ->  y  e.  B )
117, 10syl 15 . . . . . . . . . 10  |-  ( ( A. i  e.  I  S  e.  B  /\  E. i  e.  I  y  =  S )  -> 
y  e.  B )
1211ex 423 . . . . . . . . 9  |-  ( A. i  e.  I  S  e.  B  ->  ( E. i  e.  I  y  =  S  ->  y  e.  B ) )
1312ad2antlr 707 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( E. i  e.  I  y  =  S  ->  y  e.  B
) )
1413abssdv 3247 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  { y  |  E. i  e.  I 
y  =  S }  C_  B )
15 eqid 2283 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
16 pmapglb.g . . . . . . . 8  |-  G  =  ( glb `  K
)
173, 15, 16clatleglb 14230 . . . . . . 7  |-  ( ( K  e.  CLat  /\  p  e.  B  /\  { y  |  E. i  e.  I  y  =  S }  C_  B )  ->  ( p ( le
`  K ) ( G `  { y  |  E. i  e.  I  y  =  S } )  <->  A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z ) )
182, 6, 14, 17syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( p ( le `  K ) ( G `  {
y  |  E. i  e.  I  y  =  S } )  <->  A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z ) )
19 vex 2791 . . . . . . . . . . . . 13  |-  z  e. 
_V
20 eqeq1 2289 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
y  =  S  <->  z  =  S ) )
2120rexbidv 2564 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( E. i  e.  I 
y  =  S  <->  E. i  e.  I  z  =  S ) )
2219, 21elab 2914 . . . . . . . . . . . 12  |-  ( z  e.  { y  |  E. i  e.  I 
y  =  S }  <->  E. i  e.  I  z  =  S )
2322imbi1i 315 . . . . . . . . . . 11  |-  ( ( z  e.  { y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z )  <->  ( E. i  e.  I  z  =  S  ->  p ( le
`  K ) z ) )
24 r19.23v 2659 . . . . . . . . . . 11  |-  ( A. i  e.  I  (
z  =  S  ->  p ( le `  K ) z )  <-> 
( E. i  e.  I  z  =  S  ->  p ( le
`  K ) z ) )
2523, 24bitr4i 243 . . . . . . . . . 10  |-  ( ( z  e.  { y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z )  <->  A. i  e.  I 
( z  =  S  ->  p ( le
`  K ) z ) )
2625albii 1553 . . . . . . . . 9  |-  ( A. z ( z  e. 
{ y  |  E. i  e.  I  y  =  S }  ->  p
( le `  K
) z )  <->  A. z A. i  e.  I 
( z  =  S  ->  p ( le
`  K ) z ) )
27 df-ral 2548 . . . . . . . . 9  |-  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. z
( z  e.  {
y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z ) )
28 ralcom4 2806 . . . . . . . . 9  |-  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. z A. i  e.  I  ( z  =  S  ->  p ( le `  K ) z ) )
2926, 27, 283bitr4i 268 . . . . . . . 8  |-  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. i  e.  I  A. z
( z  =  S  ->  p ( le
`  K ) z ) )
30 nfv 1605 . . . . . . . . . . 11  |-  F/ z  p ( le `  K ) S
31 breq2 4027 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
p ( le `  K ) z  <->  p ( le `  K ) S ) )
3230, 31ceqsalg 2812 . . . . . . . . . 10  |-  ( S  e.  B  ->  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S ) )
3332ralimi 2618 . . . . . . . . 9  |-  ( A. i  e.  I  S  e.  B  ->  A. i  e.  I  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S ) )
34 ralbi 2679 . . . . . . . . 9  |-  ( A. i  e.  I  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S )  ->  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. i  e.  I  p ( le `  K ) S ) )
3533, 34syl 15 . . . . . . . 8  |-  ( A. i  e.  I  S  e.  B  ->  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. i  e.  I  p ( le `  K ) S ) )
3629, 35syl5bb 248 . . . . . . 7  |-  ( A. i  e.  I  S  e.  B  ->  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. i  e.  I  p ( le `  K ) S ) )
3736ad2antlr 707 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z  <->  A. i  e.  I  p ( le `  K ) S ) )
3818, 37bitrd 244 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( p ( le `  K ) ( G `  {
y  |  E. i  e.  I  y  =  S } )  <->  A. i  e.  I  p ( le `  K ) S ) )
3938rabbidva 2779 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  ->  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) }  =  {
p  e.  ( Atoms `  K )  |  A. i  e.  I  p
( le `  K
) S } )
40393adant3 975 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) }  =  {
p  e.  ( Atoms `  K )  |  A. i  e.  I  p
( le `  K
) S } )
41 simp1 955 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  K  e.  HL )
4212abssdv 3247 . . . . . 6  |-  ( A. i  e.  I  S  e.  B  ->  { y  |  E. i  e.  I  y  =  S }  C_  B )
433, 16clatglbcl 14218 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
y  |  E. i  e.  I  y  =  S }  C_  B )  ->  ( G `  { y  |  E. i  e.  I  y  =  S } )  e.  B )
441, 42, 43syl2an 463 . . . . 5  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( G `  {
y  |  E. i  e.  I  y  =  S } )  e.  B
)
45443adant3 975 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( G `  { y  |  E. i  e.  I 
y  =  S }
)  e.  B )
46 pmapglb.m . . . . 5  |-  M  =  ( pmap `  K
)
473, 15, 4, 46pmapval 29319 . . . 4  |-  ( ( K  e.  HL  /\  ( G `  { y  |  E. i  e.  I  y  =  S } )  e.  B
)  ->  ( M `  ( G `  {
y  |  E. i  e.  I  y  =  S } ) )  =  { p  e.  (
Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) } )
4841, 45, 47syl2anc 642 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) } )
49 iinrab 3964 . . . 4  |-  ( I  =/=  (/)  ->  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }  =  { p  e.  (
Atoms `  K )  | 
A. i  e.  I  p ( le `  K ) S }
)
50493ad2ant3 978 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }  =  { p  e.  (
Atoms `  K )  | 
A. i  e.  I  p ( le `  K ) S }
)
5140, 48, 503eqtr4d 2325 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }
)
52 nfv 1605 . . . 4  |-  F/ i  K  e.  HL
53 nfra1 2593 . . . 4  |-  F/ i A. i  e.  I  S  e.  B
54 nfv 1605 . . . 4  |-  F/ i  I  =/=  (/)
5552, 53, 54nf3an 1774 . . 3  |-  F/ i ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )
56 simpl1 958 . . . 4  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  K  e.  HL )
57 rsp 2603 . . . . . 6  |-  ( A. i  e.  I  S  e.  B  ->  ( i  e.  I  ->  S  e.  B ) )
5857imp 418 . . . . 5  |-  ( ( A. i  e.  I  S  e.  B  /\  i  e.  I )  ->  S  e.  B )
59583ad2antl2 1118 . . . 4  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  S  e.  B )
603, 15, 4, 46pmapval 29319 . . . 4  |-  ( ( K  e.  HL  /\  S  e.  B )  ->  ( M `  S
)  =  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }
)
6156, 59, 60syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  ( M `  S )  =  { p  e.  (
Atoms `  K )  |  p ( le `  K ) S }
)
6255, 61iineq2d 3925 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  ( M `  S )  =  |^|_ i  e.  I  {
p  e.  ( Atoms `  K )  |  p ( le `  K
) S } )
6351, 62eqtr4d 2318 1  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   |^|_ciin 3906   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   glbcglb 14077   CLatccla 14213   Atomscatm 28826   HLchlt 28913   pmapcpmap 29059
This theorem is referenced by:  pmapglb  29332  pmapglb2xN  29334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-glb 14109  df-join 14110  df-meet 14111  df-lat 14152  df-clat 14214  df-ats 28830  df-hlat 28914  df-pmap 29066
  Copyright terms: Public domain W3C validator