Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Unicode version

Theorem pmapjat1 30577
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b  |-  B  =  ( Base `  K
)
pmapjat.j  |-  .\/  =  ( join `  K )
pmapjat.a  |-  A  =  ( Atoms `  K )
pmapjat.m  |-  M  =  ( pmap `  K
)
pmapjat.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmapjat1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `
 X )  .+  ( M `  Q ) ) )

Proof of Theorem pmapjat1
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  K  e.  HL )
2 pmapjat.b . . . . . . . 8  |-  B  =  ( Base `  K
)
3 pmapjat.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
42, 3atbase 30014 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
543ad2ant3 980 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  Q  e.  B )
6 pmapjat.m . . . . . . 7  |-  M  =  ( pmap `  K
)
72, 3, 6pmapssat 30483 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  B )  ->  ( M `  Q
)  C_  A )
81, 5, 7syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  Q
)  C_  A )
9 pmapjat.p . . . . . 6  |-  .+  =  ( + P `  K
)
103, 9padd02 30536 . . . . 5  |-  ( ( K  e.  HL  /\  ( M `  Q ) 
C_  A )  -> 
( (/)  .+  ( M `  Q ) )  =  ( M `  Q
) )
111, 8, 10syl2anc 643 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( (/)  .+  ( M `
 Q ) )  =  ( M `  Q ) )
1211adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( (/)  .+  ( M `  Q )
)  =  ( M `
 Q ) )
13 fveq2 5720 . . . . 5  |-  ( X  =  ( 0. `  K )  ->  ( M `  X )  =  ( M `  ( 0. `  K ) ) )
14 hlatl 30085 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
15143ad2ant1 978 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  K  e.  AtLat )
16 eqid 2435 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
1716, 6pmap0 30489 . . . . . 6  |-  ( K  e.  AtLat  ->  ( M `  ( 0. `  K
) )  =  (/) )
1815, 17syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  ( 0. `  K ) )  =  (/) )
1913, 18sylan9eqr 2489 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( M `  X )  =  (/) )
2019oveq1d 6088 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( ( M `
 X )  .+  ( M `  Q ) )  =  ( (/)  .+  ( M `  Q
) ) )
21 oveq1 6080 . . . . 5  |-  ( X  =  ( 0. `  K )  ->  ( X  .\/  Q )  =  ( ( 0. `  K )  .\/  Q
) )
22 hlol 30086 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
23223ad2ant1 978 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  K  e.  OL )
24 pmapjat.j . . . . . . 7  |-  .\/  =  ( join `  K )
252, 24, 16olj02 29951 . . . . . 6  |-  ( ( K  e.  OL  /\  Q  e.  B )  ->  ( ( 0. `  K )  .\/  Q
)  =  Q )
2623, 5, 25syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( 0. `  K )  .\/  Q
)  =  Q )
2721, 26sylan9eqr 2489 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( X  .\/  Q )  =  Q )
2827fveq2d 5724 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( M `  ( X  .\/  Q ) )  =  ( M `
 Q ) )
2912, 20, 283eqtr4rd 2478 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =  ( 0. `  K ) )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `  X ) 
.+  ( M `  Q ) ) )
30 simpll1 996 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  K  e.  HL )
3130adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  K  e.  HL )
32 simpll2 997 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  X  e.  B )
3332adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  X  e.  B )
34 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  p  e.  A )
35 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  Q  e.  A )
3635adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  Q  e.  A )
3733, 34, 363jca 1134 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  ( X  e.  B  /\  p  e.  A  /\  Q  e.  A )
)
38 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  X  =/=  ( 0. `  K
) )
39 simpr 448 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  p
( le `  K
) ( X  .\/  Q ) )
40 eqid 2435 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
412, 40, 24, 16, 3cvrat42 30168 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  p  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  ( 0. `  K )  /\  p ( le `  K ) ( X 
.\/  Q ) )  ->  E. q  e.  A  ( q ( le
`  K ) X  /\  p ( le
`  K ) ( q  .\/  Q ) ) ) )
4241imp 419 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  p  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  ( 0. `  K )  /\  p
( le `  K
) ( X  .\/  Q ) ) )  ->  E. q  e.  A  ( q ( le
`  K ) X  /\  p ( le
`  K ) ( q  .\/  Q ) ) )
4331, 37, 38, 39, 42syl22anc 1185 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  E. q  e.  A  ( q
( le `  K
) X  /\  p
( le `  K
) ( q  .\/  Q ) ) )
4443ex 424 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  (
p ( le `  K ) ( X 
.\/  Q )  ->  E. q  e.  A  ( q ( le
`  K ) X  /\  p ( le
`  K ) ( q  .\/  Q ) ) ) )
452, 40, 3, 6elpmap 30482 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( q  e.  ( M `  X )  <-> 
( q  e.  A  /\  q ( le `  K ) X ) ) )
46453adant3 977 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( q  e.  ( M `  X )  <-> 
( q  e.  A  /\  q ( le `  K ) X ) ) )
47 df-rex 2703 . . . . . . . . . . . . 13  |-  ( E. r  e.  ( M `
 Q ) p ( le `  K
) ( q  .\/  r )  <->  E. r
( r  e.  ( M `  Q )  /\  p ( le
`  K ) ( q  .\/  r ) ) )
483, 6elpmapat 30488 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( r  e.  ( M `  Q )  <-> 
r  =  Q ) )
49483adant2 976 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( r  e.  ( M `  Q )  <-> 
r  =  Q ) )
5049anbi1d 686 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( r  e.  ( M `  Q
)  /\  p ( le `  K ) ( q  .\/  r ) )  <->  ( r  =  Q  /\  p ( le `  K ) ( q  .\/  r
) ) ) )
5150exbidv 1636 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( E. r ( r  e.  ( M `
 Q )  /\  p ( le `  K ) ( q 
.\/  r ) )  <->  E. r ( r  =  Q  /\  p ( le `  K ) ( q  .\/  r
) ) ) )
5247, 51syl5rbb 250 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( E. r ( r  =  Q  /\  p ( le `  K ) ( q 
.\/  r ) )  <->  E. r  e.  ( M `  Q )
p ( le `  K ) ( q 
.\/  r ) ) )
53 oveq2 6081 . . . . . . . . . . . . . . 15  |-  ( r  =  Q  ->  (
q  .\/  r )  =  ( q  .\/  Q ) )
5453breq2d 4216 . . . . . . . . . . . . . 14  |-  ( r  =  Q  ->  (
p ( le `  K ) ( q 
.\/  r )  <->  p ( le `  K ) ( q  .\/  Q ) ) )
5554ceqsexgv 3060 . . . . . . . . . . . . 13  |-  ( Q  e.  A  ->  ( E. r ( r  =  Q  /\  p ( le `  K ) ( q  .\/  r
) )  <->  p ( le `  K ) ( q  .\/  Q ) ) )
56553ad2ant3 980 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( E. r ( r  =  Q  /\  p ( le `  K ) ( q 
.\/  r ) )  <-> 
p ( le `  K ) ( q 
.\/  Q ) ) )
5752, 56bitr3d 247 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r )  <-> 
p ( le `  K ) ( q 
.\/  Q ) ) )
5846, 57anbi12d 692 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( q  e.  ( M `  X
)  /\  E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r ) )  <->  ( ( q  e.  A  /\  q
( le `  K
) X )  /\  p ( le `  K ) ( q 
.\/  Q ) ) ) )
59 anass 631 . . . . . . . . . 10  |-  ( ( ( q  e.  A  /\  q ( le `  K ) X )  /\  p ( le
`  K ) ( q  .\/  Q ) )  <->  ( q  e.  A  /\  ( q ( le `  K
) X  /\  p
( le `  K
) ( q  .\/  Q ) ) ) )
6058, 59syl6bb 253 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( q  e.  ( M `  X
)  /\  E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r ) )  <->  ( q  e.  A  /\  ( q ( le `  K
) X  /\  p
( le `  K
) ( q  .\/  Q ) ) ) ) )
6160rexbidv2 2720 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( E. q  e.  ( M `  X
) E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r )  <->  E. q  e.  A  ( q ( le
`  K ) X  /\  p ( le
`  K ) ( q  .\/  Q ) ) ) )
6261ad2antrr 707 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  ( E. q  e.  ( M `  X ) E. r  e.  ( M `  Q )
p ( le `  K ) ( q 
.\/  r )  <->  E. q  e.  A  ( q
( le `  K
) X  /\  p
( le `  K
) ( q  .\/  Q ) ) ) )
6344, 62sylibrd 226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K
) )  /\  p  e.  A )  ->  (
p ( le `  K ) ( X 
.\/  Q )  ->  E. q  e.  ( M `  X ) E. r  e.  ( M `  Q )
p ( le `  K ) ( q 
.\/  r ) ) )
6463imdistanda 675 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( ( p  e.  A  /\  p
( le `  K
) ( X  .\/  Q ) )  ->  (
p  e.  A  /\  E. q  e.  ( M `
 X ) E. r  e.  ( M `
 Q ) p ( le `  K
) ( q  .\/  r ) ) ) )
65 hllat 30088 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
66653ad2ant1 978 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  K  e.  Lat )
67 simp2 958 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  X  e.  B )
682, 24latjcl 14471 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( X  .\/  Q
)  e.  B )
6966, 67, 5, 68syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( X  .\/  Q
)  e.  B )
702, 40, 3, 6elpmap 30482 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .\/  Q )  e.  B )  -> 
( p  e.  ( M `  ( X 
.\/  Q ) )  <-> 
( p  e.  A  /\  p ( le `  K ) ( X 
.\/  Q ) ) ) )
711, 69, 70syl2anc 643 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( p  e.  ( M `  ( X 
.\/  Q ) )  <-> 
( p  e.  A  /\  p ( le `  K ) ( X 
.\/  Q ) ) ) )
7271adantr 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( p  e.  ( M `  ( X  .\/  Q ) )  <-> 
( p  e.  A  /\  p ( le `  K ) ( X 
.\/  Q ) ) ) )
732, 3, 6pmapssat 30483 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  C_  A )
74733adant3 977 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  X
)  C_  A )
7566, 74, 83jca 1134 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( K  e.  Lat  /\  ( M `  X
)  C_  A  /\  ( M `  Q ) 
C_  A ) )
7675adantr 452 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( K  e. 
Lat  /\  ( M `  X )  C_  A  /\  ( M `  Q
)  C_  A )
)
772, 16, 6pmapeq0 30490 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  =  (/)  <->  X  =  ( 0. `  K ) ) )
78773adant3 977 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( M `  X )  =  (/)  <->  X  =  ( 0. `  K ) ) )
7978necon3bid 2633 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( M `  X )  =/=  (/)  <->  X  =/=  ( 0. `  K ) ) )
8079biimpar 472 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( M `  X )  =/=  (/) )
81 simp3 959 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  Q  e.  A )
8216, 3atn0 30033 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  Q  e.  A )  ->  Q  =/=  ( 0. `  K
) )
8315, 81, 82syl2anc 643 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  Q  =/=  ( 0.
`  K ) )
842, 16, 6pmapeq0 30490 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Q  e.  B )  ->  ( ( M `  Q )  =  (/)  <->  Q  =  ( 0. `  K ) ) )
851, 5, 84syl2anc 643 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( M `  Q )  =  (/)  <->  Q  =  ( 0. `  K ) ) )
8685necon3bid 2633 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( M `  Q )  =/=  (/)  <->  Q  =/=  ( 0. `  K ) ) )
8783, 86mpbird 224 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  Q
)  =/=  (/) )
8887adantr 452 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( M `  Q )  =/=  (/) )
8940, 24, 3, 9elpaddn0 30524 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  ( M `  X
)  C_  A  /\  ( M `  Q ) 
C_  A )  /\  ( ( M `  X )  =/=  (/)  /\  ( M `  Q )  =/=  (/) ) )  -> 
( p  e.  ( ( M `  X
)  .+  ( M `  Q ) )  <->  ( p  e.  A  /\  E. q  e.  ( M `  X
) E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r ) ) ) )
9076, 80, 88, 89syl12anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( p  e.  ( ( M `  X )  .+  ( M `  Q )
)  <->  ( p  e.  A  /\  E. q  e.  ( M `  X
) E. r  e.  ( M `  Q
) p ( le
`  K ) ( q  .\/  r ) ) ) )
9164, 72, 903imtr4d 260 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( p  e.  ( M `  ( X  .\/  Q ) )  ->  p  e.  ( ( M `  X
)  .+  ( M `  Q ) ) ) )
9291ssrdv 3346 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( M `  ( X  .\/  Q ) )  C_  ( ( M `  X )  .+  ( M `  Q
) ) )
932, 24, 6, 9pmapjoin 30576 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( ( M `  X )  .+  ( M `  Q )
)  C_  ( M `  ( X  .\/  Q
) ) )
9466, 67, 5, 93syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( ( M `  X )  .+  ( M `  Q )
)  C_  ( M `  ( X  .\/  Q
) ) )
9594adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( ( M `
 X )  .+  ( M `  Q ) )  C_  ( M `  ( X  .\/  Q
) ) )
9692, 95eqssd 3357 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  /\  X  =/=  ( 0. `  K ) )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `  X ) 
.+  ( M `  Q ) ) )
9729, 96pm2.61dane 2676 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( M `  ( X  .\/  Q ) )  =  ( ( M `
 X )  .+  ( M `  Q ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    C_ wss 3312   (/)c0 3620   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   0.cp0 14458   Latclat 14466   OLcol 29899   Atomscatm 29988   AtLatcal 29989   HLchlt 30075   pmapcpmap 30221   + Pcpadd 30519
This theorem is referenced by:  pmapjat2  30578  pmapjlln1  30579  atmod1i2  30583  paddatclN  30673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29901  df-ol 29903  df-oml 29904  df-covers 29991  df-ats 29992  df-atl 30023  df-cvlat 30047  df-hlat 30076  df-pmap 30228  df-padd 30520
  Copyright terms: Public domain W3C validator