Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Unicode version

Theorem pmaple 30485
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b  |-  B  =  ( Base `  K
)
pmaple.l  |-  .<_  =  ( le `  K )
pmaple.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmaple  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )

Proof of Theorem pmaple
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 hlpos 30090 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
2 pmaple.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
3 eqid 2435 . . . . . . . . . 10  |-  ( Atoms `  K )  =  (
Atoms `  K )
42, 3atbase 30014 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
5 pmaple.l . . . . . . . . . . . . . . 15  |-  .<_  =  ( le `  K )
62, 5postr 14402 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
76exp4b 591 . . . . . . . . . . . . 13  |-  ( K  e.  Poset  ->  ( (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
873expd 1170 . . . . . . . . . . . 12  |-  ( K  e.  Poset  ->  ( p  e.  B  ->  ( X  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
98com23 74 . . . . . . . . . . 11  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( p  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
109com34 79 . . . . . . . . . 10  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( Y  e.  B  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) ) ) )
11103imp 1147 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
124, 11syl5 30 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  ( X  .<_  Y  ->  p  .<_  Y ) ) ) )
1312com34 79 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  ( X  .<_  Y  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1413com23 74 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1514ralrimdv 2787 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K )
( p  .<_  X  ->  p  .<_  Y ) ) )
161, 15syl3an1 1217 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K ) ( p  .<_  X  ->  p 
.<_  Y ) ) )
17 ss2rab 3411 . . . 4  |-  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  <->  A. p  e.  ( Atoms `  K ) ( p 
.<_  X  ->  p  .<_  Y ) )
1816, 17syl6ibr 219 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
19 hlclat 30083 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
20 ssrab2 3420 . . . . . . . . 9  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  ( Atoms `  K )
212, 3atssbase 30015 . . . . . . . . 9  |-  ( Atoms `  K )  C_  B
2220, 21sstri 3349 . . . . . . . 8  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  B
23 eqid 2435 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
242, 5, 23lubss 14540 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y }  C_  B  /\  { p  e.  (
Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2522, 24mp3an2 1267 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2625ex 424 . . . . . 6  |-  ( K  e.  CLat  ->  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
2719, 26syl 16 . . . . 5  |-  ( K  e.  HL  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
28273ad2ant1 978 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
29 hlomcmat 30089 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
30293ad2ant1 978 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat ) )
31 simp2 958 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
322, 5, 23, 3atlatmstc 30044 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
3330, 31, 32syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
34 simp3 959 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
352, 5, 23, 3atlatmstc 30044 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3630, 34, 35syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3733, 36breq12d 4217 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  <->  X  .<_  Y ) )
3828, 37sylibd 206 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  X  .<_  Y )
)
3918, 38impbid 184 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
40 pmaple.m . . . . 5  |-  M  =  ( pmap `  K
)
412, 5, 3, 40pmapval 30481 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
42413adant3 977 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
432, 5, 3, 40pmapval 30481 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
44433adant2 976 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
4542, 44sseq12d 3369 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  C_  ( M `  Y )  <->  { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
) )
4639, 45bitr4d 248 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701    C_ wss 3312   class class class wbr 4204   ` cfv 5446   Basecbs 13461   lecple 13528   Posetcpo 14389   lubclub 14391   CLatccla 14528   OMLcoml 29900   Atomscatm 29988   AtLatcal 29989   HLchlt 30075   pmapcpmap 30221
This theorem is referenced by:  pmap11  30486  hlmod1i  30580  paddunN  30651  pmapojoinN  30692  pl42N  30707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29901  df-ol 29903  df-oml 29904  df-covers 29991  df-ats 29992  df-atl 30023  df-cvlat 30047  df-hlat 30076  df-pmap 30228
  Copyright terms: Public domain W3C validator