Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapocjN Unicode version

Theorem pmapocjN 30741
Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapocj.b  |-  B  =  ( Base `  K
)
pmapocj.j  |-  .\/  =  ( join `  K )
pmapocj.m  |-  ./\  =  ( meet `  K )
pmapocj.o  |-  ._|_  =  ( oc `  K )
pmapocj.f  |-  F  =  ( pmap `  K
)
pmapocj.p  |-  .+  =  ( + P `  K
)
pmapocj.r  |-  N  =  ( _|_ P `  K )
Assertion
Ref Expression
pmapocjN  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  (  ._|_  `  ( X  .\/  Y ) ) )  =  ( N `  (
( F `  X
)  .+  ( F `  Y ) ) ) )

Proof of Theorem pmapocjN
StepHypRef Expression
1 pmapocj.b . . . 4  |-  B  =  ( Base `  K
)
2 pmapocj.j . . . 4  |-  .\/  =  ( join `  K )
3 pmapocj.f . . . 4  |-  F  =  ( pmap `  K
)
4 pmapocj.p . . . 4  |-  .+  =  ( + P `  K
)
5 pmapocj.r . . . 4  |-  N  =  ( _|_ P `  K )
61, 2, 3, 4, 5pmapj2N 30740 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .\/  Y ) )  =  ( N `  ( N `  ( ( F `  X ) 
.+  ( F `  Y ) ) ) ) )
76fveq2d 5545 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( F `  ( X  .\/  Y ) ) )  =  ( N `  ( N `  ( N `
 ( ( F `
 X )  .+  ( F `  Y ) ) ) ) ) )
8 simp1 955 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
9 hllat 30175 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
101, 2latjcl 14172 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
119, 10syl3an1 1215 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
12 pmapocj.o . . . 4  |-  ._|_  =  ( oc `  K )
131, 12, 3, 5polpmapN 30723 . . 3  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B )  -> 
( N `  ( F `  ( X  .\/  Y ) ) )  =  ( F `  (  ._|_  `  ( X  .\/  Y ) ) ) )
148, 11, 13syl2anc 642 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( F `  ( X  .\/  Y ) ) )  =  ( F `  (  ._|_  `  ( X  .\/  Y ) ) ) )
15 eqid 2296 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
161, 15, 3pmapssat 30570 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
17163adant3 975 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
181, 15, 3pmapssat 30570 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
19183adant2 974 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
2015, 4paddssat 30625 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  X ) 
C_  ( Atoms `  K
)  /\  ( F `  Y )  C_  ( Atoms `  K ) )  ->  ( ( F `
 X )  .+  ( F `  Y ) )  C_  ( Atoms `  K ) )
218, 17, 19, 20syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K ) )
2215, 53polN 30727 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K ) )  -> 
( N `  ( N `  ( N `  ( ( F `  X )  .+  ( F `  Y )
) ) ) )  =  ( N `  ( ( F `  X )  .+  ( F `  Y )
) ) )
238, 21, 22syl2anc 642 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( N `  ( N `  ( ( F `  X )  .+  ( F `  Y )
) ) ) )  =  ( N `  ( ( F `  X )  .+  ( F `  Y )
) ) )
247, 14, 233eqtr3d 2336 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  (  ._|_  `  ( X  .\/  Y ) ) )  =  ( N `  (
( F `  X
)  .+  ( F `  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   ` cfv 5271  (class class class)co 5874   Basecbs 13164   occoc 13232   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   pmapcpmap 30308   + Pcpadd 30606   _|_ PcpolN 30713
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-polarityN 30714
  Copyright terms: Public domain W3C validator