Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssat Unicode version

Theorem pmapssat 29948
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
Hypotheses
Ref Expression
pmapssat.b  |-  B  =  ( Base `  K
)
pmapssat.a  |-  A  =  ( Atoms `  K )
pmapssat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapssat  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  C_  A )

Proof of Theorem pmapssat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 pmapssat.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2283 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 pmapssat.a . . 3  |-  A  =  ( Atoms `  K )
4 pmapssat.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 29946 . 2  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  A  |  p
( le `  K
) X } )
6 ssrab2 3258 . . 3  |-  { p  e.  A  |  p
( le `  K
) X }  C_  A
76a1i 10 . 2  |-  ( ( K  e.  C  /\  X  e.  B )  ->  { p  e.  A  |  p ( le `  K ) X }  C_  A )
85, 7eqsstrd 3212 1  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   Atomscatm 29453   pmapcpmap 29686
This theorem is referenced by:  pmapssbaN  29949  pmapglb2N  29960  pmapglb2xN  29961  pmapjoin  30041  pmapjat1  30042  pmapjat2  30043  pmapjlln1  30044  hlmod1i  30045  polpmapN  30101  2pmaplubN  30115  pmapj2N  30118  pmapocjN  30119  polatN  30120  pmapsubclN  30135  ispsubcl2N  30136  pl42lem2N  30169  pl42lem3N  30170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-pmap 29693
  Copyright terms: Public domain W3C validator