Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Unicode version

Theorem pmapsub 29957
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b  |-  B  =  ( Base `  K
)
pmapsub.s  |-  S  =  ( PSubSp `  K )
pmapsub.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapsub  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )

Proof of Theorem pmapsub
Dummy variables  q  p  r  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2283 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2283 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 pmapsub.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 29946 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } )
6 breq1 4026 . . . . . . . . . . . . . 14  |-  ( c  =  p  ->  (
c ( le `  K ) X  <->  p ( le `  K ) X ) )
76elrab 2923 . . . . . . . . . . . . 13  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( p  e.  ( Atoms `  K )  /\  p ( le `  K ) X ) )
81, 3atbase 29479 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
98anim1i 551 . . . . . . . . . . . . 13  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) X )  -> 
( p  e.  B  /\  p ( le `  K ) X ) )
107, 9sylbi 187 . . . . . . . . . . . 12  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( p  e.  B  /\  p
( le `  K
) X ) )
11 breq1 4026 . . . . . . . . . . . . . 14  |-  ( c  =  q  ->  (
c ( le `  K ) X  <->  q ( le `  K ) X ) )
1211elrab 2923 . . . . . . . . . . . . 13  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( q  e.  ( Atoms `  K )  /\  q ( le `  K ) X ) )
131, 3atbase 29479 . . . . . . . . . . . . . 14  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
1413anim1i 551 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) X )  -> 
( q  e.  B  /\  q ( le `  K ) X ) )
1512, 14sylbi 187 . . . . . . . . . . . 12  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( q  e.  B  /\  q
( le `  K
) X ) )
1610, 15anim12i 549 . . . . . . . . . . 11  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) ) )
17 an4 797 . . . . . . . . . . 11  |-  ( ( ( p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) )  <->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1816, 17sylib 188 . . . . . . . . . 10  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1918anim2i 552 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  ( ( K  e.  Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) ) )
201, 3atbase 29479 . . . . . . . . 9  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  B )
21 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( join `  K )  =  (
join `  K )
221, 2, 21latjle12 14168 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  <->  ( p (
join `  K )
q ) ( le
`  K ) X ) )
2322biimpd 198 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  ->  ( p
( join `  K )
q ) ( le
`  K ) X ) )
24233exp2 1169 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
p  e.  B  -> 
( q  e.  B  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  (
p ( join `  K
) q ) ( le `  K ) X ) ) ) ) )
2524imp3a 420 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2625com23 72 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( (
p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2726imp43 578 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( ( p  e.  B  /\  q  e.  B )  /\  (
p ( le `  K ) X  /\  q ( le `  K ) X ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
2827adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
291, 21latjcl 14156 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  q  e.  B )  ->  ( p ( join `  K ) q )  e.  B )
30293expib 1154 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( p
( join `  K )
q )  e.  B
) )
311, 2lattr 14162 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  ( p ( join `  K ) q )  e.  B  /\  X  e.  B ) )  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) )
32313exp2 1169 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
r  e.  B  -> 
( ( p (
join `  K )
q )  e.  B  ->  ( X  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3332com24 81 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p ( join `  K ) q )  e.  B  ->  (
r  e.  B  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3430, 33syl5d 62 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( r  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) ) ) ) )
3534imp41 576 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  B  /\  q  e.  B )
)  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3635adantlrr 701 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3728, 36mpan2d 655 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) X ) )
3819, 20, 37syl2an 463 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r
( le `  K
) X ) )
39 simpr 447 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  r  e.  ( Atoms `  K )
)
4038, 39jctild 527 . . . . . . 7  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  (
r  e.  ( Atoms `  K )  /\  r
( le `  K
) X ) ) )
41 breq1 4026 . . . . . . . 8  |-  ( c  =  r  ->  (
c ( le `  K ) X  <->  r ( le `  K ) X ) )
4241elrab 2923 . . . . . . 7  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) X ) )
4340, 42syl6ibr 218 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )
4443ralrimiva 2626 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
4544ralrimivva 2635 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
46 ssrab2 3258 . . . 4  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )
4745, 46jctil 523 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. q  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) )
48 pmapsub.s . . . . 5  |-  S  =  ( PSubSp `  K )
492, 21, 3, 48ispsubsp 29934 . . . 4  |-  ( K  e.  Lat  ->  ( { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S  <->  ( { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } A. q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5049adantr 451 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  e.  S  <->  ( {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X }  C_  ( Atoms `  K )  /\  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5147, 50mpbird 223 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S )
525, 51eqeltrd 2357 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   PSubSpcpsubsp 29685   pmapcpmap 29686
This theorem is referenced by:  hlmod1i  30045  polsubN  30096  pl42lem4N  30171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-lat 14152  df-ats 29457  df-psubsp 29692  df-pmap 29693
  Copyright terms: Public domain W3C validator