Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmex Structured version   Unicode version

Theorem pmex 7015
 Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem pmex
StepHypRef Expression
1 ancom 438 . . 3
21abbii 2547 . 2
3 xpexg 4981 . . 3
4 abssexg 4376 . . 3
53, 4syl 16 . 2
62, 5syl5eqel 2519 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  cab 2421  cvv 2948   wss 3312   cxp 4868   wfun 5440 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-opab 4259  df-xp 4876
 Copyright terms: Public domain W3C validator