MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Unicode version

Theorem pmltpc 18810
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
)  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
Distinct variable groups:    a, b,
c, x, y, A    F, a, b, c, x, y

Proof of Theorem pmltpc
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 2589 . . . . . . . 8  |-  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
21rexbii 2568 . . . . . . 7  |-  ( E. x  e.  A  E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  E. x  e.  A  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
3 rexnal 2554 . . . . . . 7  |-  ( E. x  e.  A  -.  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
42, 3bitri 240 . . . . . 6  |-  ( E. x  e.  A  E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
) )
5 rexanali 2589 . . . . . . . 8  |-  ( E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
65rexbii 2568 . . . . . . 7  |-  ( E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
7 rexnal 2554 . . . . . . . 8  |-  ( E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  -.  A. z  e.  A  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z )
) )
8 breq1 4026 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  <_  w  <->  x  <_  w ) )
9 fveq2 5525 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
109breq2d 4035 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( F `  w
)  <_  ( F `  z )  <->  ( F `  w )  <_  ( F `  x )
) )
118, 10imbi12d 311 . . . . . . . . 9  |-  ( z  =  x  ->  (
( z  <_  w  ->  ( F `  w
)  <_  ( F `  z ) )  <->  ( x  <_  w  ->  ( F `  w )  <_  ( F `  x )
) ) )
12 breq2 4027 . . . . . . . . . 10  |-  ( w  =  y  ->  (
x  <_  w  <->  x  <_  y ) )
13 fveq2 5525 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( F `  w )  =  ( F `  y ) )
1413breq1d 4033 . . . . . . . . . 10  |-  ( w  =  y  ->  (
( F `  w
)  <_  ( F `  x )  <->  ( F `  y )  <_  ( F `  x )
) )
1512, 14imbi12d 311 . . . . . . . . 9  |-  ( w  =  y  ->  (
( x  <_  w  ->  ( F `  w
)  <_  ( F `  x ) )  <->  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
1611, 15cbvral2v 2772 . . . . . . . 8  |-  ( A. z  e.  A  A. w  e.  A  (
z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
177, 16xchbinx 301 . . . . . . 7  |-  ( E. z  e.  A  -.  A. w  e.  A  ( z  <_  w  ->  ( F `  w )  <_  ( F `  z ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
186, 17bitri 240 . . . . . 6  |-  ( E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) )  <->  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
194, 18anbi12i 678 . . . . 5  |-  ( ( E. x  e.  A  E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <-> 
( -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
)  /\  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
20 reeanv 2707 . . . . 5  |-  ( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <-> 
( E. x  e.  A  E. y  e.  A  ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. z  e.  A  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )
21 ioran 476 . . . . 5  |-  ( -.  ( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )  <->  ( -.  A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  /\  -.  A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) ) )
2219, 20, 213bitr4i 268 . . . 4  |-  ( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  <->  -.  ( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
23 reeanv 2707 . . . . . 6  |-  ( E. y  e.  A  E. w  e.  A  (
( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y )
)  /\  ( z  <_  w  /\  -.  ( F `  w )  <_  ( F `  z
) ) )  <->  ( E. y  e.  A  (
x  <_  y  /\  -.  ( F `  x
)  <_  ( F `  y ) )  /\  E. w  e.  A  ( z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )
24 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F ) )
2524simpld 445 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  F  e.  ( RR  ^pm  RR ) )
2624simprd 449 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  A  C_  dom  F )
27 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  ( x  e.  A  /\  z  e.  A ) )
2827simpld 445 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  x  e.  A )
29 simplrl 736 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  y  e.  A )
3027simprd 449 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  z  e.  A )
31 simplrr 737 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  w  e.  A )
32 simprll 738 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  x  <_  y )
33 simprrl 740 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  z  <_  w )
34 simprlr 739 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  -.  ( F `  x )  <_  ( F `  y
) )
35 simprrr 741 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  -.  ( F `  w )  <_  ( F `  z
) )
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 18809 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) )
3736ex 423 . . . . . . 7  |-  ( ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F )  /\  ( x  e.  A  /\  z  e.  A ) )  /\  ( y  e.  A  /\  w  e.  A
) )  ->  (
( ( x  <_ 
y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
3837rexlimdvva 2674 . . . . . 6  |-  ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F
)  /\  ( x  e.  A  /\  z  e.  A ) )  -> 
( E. y  e.  A  E. w  e.  A  ( ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y ) )  /\  ( z  <_  w  /\  -.  ( F `  w )  <_  ( F `  z )
) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
3923, 38syl5bir 209 . . . . 5  |-  ( ( ( F  e.  ( RR  ^pm  RR )  /\  A  C_  dom  F
)  /\  ( x  e.  A  /\  z  e.  A ) )  -> 
( ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4039rexlimdvva 2674 . . . 4  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( E. x  e.  A  E. z  e.  A  ( E. y  e.  A  ( x  <_  y  /\  -.  ( F `  x )  <_  ( F `  y
) )  /\  E. w  e.  A  (
z  <_  w  /\  -.  ( F `  w
)  <_  ( F `  z ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4122, 40syl5bir 209 . . 3  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( -.  ( A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )  ->  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4241orrd 367 . 2  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( ( A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  (
a  <  b  /\  b  <  c  /\  (
( ( F `  a )  <  ( F `  b )  /\  ( F `  c
)  <  ( F `  b ) )  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b
)  <  ( F `  c ) ) ) ) ) )
43 df-3or 935 . 2  |-  ( ( A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  x
)  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) )  \/ 
E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  <  c  /\  ( ( ( F `
 a )  < 
( F `  b
)  /\  ( F `  c )  <  ( F `  b )
)  \/  ( ( F `  b )  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) )  <->  ( ( A. x  e.  A  A. y  e.  A  (
x  <_  y  ->  ( F `  x )  <_  ( F `  y ) )  \/ 
A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  < 
b  /\  b  <  c  /\  ( ( ( F `  a )  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
4442, 43sylibr 203 1  |-  ( ( F  e.  ( RR 
^pm  RR )  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y  e.  A  ( x  <_ 
y  ->  ( F `  x )  <_  ( F `  y )
)  \/  A. x  e.  A  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
)  \/  E. a  e.  A  E. b  e.  A  E. c  e.  A  ( a  <  b  /\  b  < 
c  /\  ( (
( F `  a
)  <  ( F `  b )  /\  ( F `  c )  <  ( F `  b
) )  \/  (
( F `  b
)  <  ( F `  a )  /\  ( F `  b )  <  ( F `  c
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   dom cdm 4689   ` cfv 5255  (class class class)co 5858    ^pm cpm 6773   RRcr 8736    < clt 8867    <_ cle 8868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873
  Copyright terms: Public domain W3C validator