Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod1i Structured version   Unicode version

Theorem pmod1i 30743
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
Hypotheses
Ref Expression
pmod.a  |-  A  =  ( Atoms `  K )
pmod.s  |-  S  =  ( PSubSp `  K )
pmod.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmod1i  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  -> 
( X  C_  Z  ->  ( ( X  .+  Y )  i^i  Z
)  =  ( X 
.+  ( Y  i^i  Z ) ) ) )

Proof of Theorem pmod1i
StepHypRef Expression
1 eqid 2442 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2442 . . . . 5  |-  ( join `  K )  =  (
join `  K )
3 pmod.a . . . . 5  |-  A  =  ( Atoms `  K )
4 pmod.s . . . . 5  |-  S  =  ( PSubSp `  K )
5 pmod.p . . . . 5  |-  .+  =  ( + P `  K
)
61, 2, 3, 4, 5pmodlem2 30742 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
763expa 1154 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( ( X  .+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
8 inss1 3546 . . . . 5  |-  ( Y  i^i  Z )  C_  Y
9 simpll 732 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  K  e.  HL )
10 simplr2 1001 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  Y  C_  A
)
11 simplr1 1000 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  X  C_  A
)
123, 5paddss2 30713 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  (
( Y  i^i  Z
)  C_  Y  ->  ( X  .+  ( Y  i^i  Z ) ) 
C_  ( X  .+  Y ) ) )
139, 10, 11, 12syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( ( Y  i^i  Z )  C_  Y  ->  ( X  .+  ( Y  i^i  Z ) )  C_  ( X  .+  Y ) ) )
148, 13mpi 17 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( X  .+  ( Y  i^i  Z
) )  C_  ( X  .+  Y ) )
15 simpl 445 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  ->  K  e.  HL )
163, 4psubssat 30649 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  Z  C_  A )
17163ad2antr3 1125 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  ->  Z  C_  A )
18 simpr2 965 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  ->  Y  C_  A )
19 ssinss1 3554 . . . . . . . 8  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
2018, 19syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  -> 
( Y  i^i  Z
)  C_  A )
213, 5paddss1 30712 . . . . . . 7  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  ( X  C_  Z  ->  ( X  .+  ( Y  i^i  Z ) )  C_  ( Z  .+  ( Y  i^i  Z ) ) ) )
2215, 17, 20, 21syl3anc 1185 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  -> 
( X  C_  Z  ->  ( X  .+  ( Y  i^i  Z ) ) 
C_  ( Z  .+  ( Y  i^i  Z ) ) ) )
2322imp 420 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( X  .+  ( Y  i^i  Z
) )  C_  ( Z  .+  ( Y  i^i  Z ) ) )
24 simplr3 1002 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  Z  e.  S )
259, 24, 16syl2anc 644 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  Z  C_  A
)
26 inss2 3547 . . . . . . . 8  |-  ( Y  i^i  Z )  C_  Z
273, 5paddss2 30713 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Z  C_  A )  ->  (
( Y  i^i  Z
)  C_  Z  ->  ( Z  .+  ( Y  i^i  Z ) ) 
C_  ( Z  .+  Z ) ) )
2826, 27mpi 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Z  C_  A )  ->  ( Z  .+  ( Y  i^i  Z ) )  C_  ( Z  .+  Z ) )
299, 25, 25, 28syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( Z  .+  ( Y  i^i  Z
) )  C_  ( Z  .+  Z ) )
304, 5paddidm 30736 . . . . . . 7  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  ( Z  .+  Z
)  =  Z )
319, 24, 30syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( Z  .+  Z )  =  Z )
3229, 31sseqtrd 3370 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( Z  .+  ( Y  i^i  Z
) )  C_  Z
)
3323, 32sstrd 3344 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( X  .+  ( Y  i^i  Z
) )  C_  Z
)
3414, 33ssind 3550 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( X  .+  ( Y  i^i  Z
) )  C_  (
( X  .+  Y
)  i^i  Z )
)
357, 34eqssd 3351 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )
)  /\  X  C_  Z
)  ->  ( ( X  .+  Y )  i^i 
Z )  =  ( X  .+  ( Y  i^i  Z ) ) )
3635ex 425 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S ) )  -> 
( X  C_  Z  ->  ( ( X  .+  Y )  i^i  Z
)  =  ( X 
.+  ( Y  i^i  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    i^i cin 3305    C_ wss 3306   ` cfv 5483  (class class class)co 6110   lecple 13567   joincjn 14432   Atomscatm 30159   HLchlt 30246   PSubSpcpsubsp 30391   + Pcpadd 30690
This theorem is referenced by:  pmod2iN  30744  pmodN  30745  pmodl42N  30746  hlmod1i  30751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-undef 6572  df-riota 6578  df-poset 14434  df-plt 14446  df-lub 14462  df-join 14464  df-lat 14506  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-psubsp 30398  df-padd 30691
  Copyright terms: Public domain W3C validator