Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod2iN Unicode version

Theorem pmod2iN 30107
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a  |-  A  =  ( Atoms `  K )
pmod.s  |-  S  =  ( PSubSp `  K )
pmod.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmod2iN  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( Z  C_  X  ->  ( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y 
.+  Z ) ) ) )

Proof of Theorem pmod2iN
StepHypRef Expression
1 incom 3437 . . . . . 6  |-  ( X  i^i  Y )  =  ( Y  i^i  X
)
21oveq1i 5955 . . . . 5  |-  ( ( X  i^i  Y ) 
.+  Z )  =  ( ( Y  i^i  X )  .+  Z )
3 hllat 29622 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 976 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  K  e.  Lat )
5 simp22 989 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  Y  C_  A )
6 ssinss1 3473 . . . . . . 7  |-  ( Y 
C_  A  ->  ( Y  i^i  X )  C_  A )
75, 6syl 15 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Y  i^i  X
)  C_  A )
8 simp23 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  Z  C_  A )
9 pmod.a . . . . . . 7  |-  A  =  ( Atoms `  K )
10 pmod.p . . . . . . 7  |-  .+  =  ( + P `  K
)
119, 10paddcom 30071 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  i^i  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  i^i  X
)  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
124, 7, 8, 11syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Y  i^i  X )  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
132, 12syl5eq 2402 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
14 simp21 988 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  X  e.  S )
158, 5, 143jca 1132 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Z  C_  A  /\  Y  C_  A  /\  X  e.  S )
)
16 pmod.s . . . . . . 7  |-  S  =  ( PSubSp `  K )
179, 16, 10pmod1i 30106 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  e.  S ) )  -> 
( Z  C_  X  ->  ( ( Z  .+  Y )  i^i  X
)  =  ( Z 
.+  ( Y  i^i  X ) ) ) )
18173impia 1148 . . . . 5  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  e.  S )  /\  Z  C_  X )  ->  (
( Z  .+  Y
)  i^i  X )  =  ( Z  .+  ( Y  i^i  X ) ) )
1915, 18syld3an2 1229 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Z  .+  Y )  i^i  X
)  =  ( Z 
.+  ( Y  i^i  X ) ) )
209, 10paddcom 30071 . . . . . 6  |-  ( ( K  e.  Lat  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  =  ( Y  .+  Z
) )
214, 8, 5, 20syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Z  .+  Y
)  =  ( Y 
.+  Z ) )
2221ineq1d 3445 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Z  .+  Y )  i^i  X
)  =  ( ( Y  .+  Z )  i^i  X ) )
2313, 19, 223eqtr2d 2396 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( ( Y 
.+  Z )  i^i 
X ) )
24 incom 3437 . . 3  |-  ( ( Y  .+  Z )  i^i  X )  =  ( X  i^i  ( Y  .+  Z ) )
2523, 24syl6eq 2406 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y  .+  Z ) ) )
26253expia 1153 1  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( Z  C_  X  ->  ( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y 
.+  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    i^i cin 3227    C_ wss 3228   ` cfv 5337  (class class class)co 5945   Latclat 14250   Atomscatm 29522   HLchlt 29609   PSubSpcpsubsp 29754   + Pcpadd 30053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-poset 14179  df-plt 14191  df-lub 14207  df-join 14209  df-lat 14251  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-psubsp 29761  df-padd 30054
  Copyright terms: Public domain W3C validator