Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod2iN Structured version   Unicode version

Theorem pmod2iN 30719
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a  |-  A  =  ( Atoms `  K )
pmod.s  |-  S  =  ( PSubSp `  K )
pmod.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmod2iN  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( Z  C_  X  ->  ( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y 
.+  Z ) ) ) )

Proof of Theorem pmod2iN
StepHypRef Expression
1 incom 3535 . . . . . 6  |-  ( X  i^i  Y )  =  ( Y  i^i  X
)
21oveq1i 6094 . . . . 5  |-  ( ( X  i^i  Y ) 
.+  Z )  =  ( ( Y  i^i  X )  .+  Z )
3 hllat 30234 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 979 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  K  e.  Lat )
5 simp22 992 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  Y  C_  A )
6 ssinss1 3571 . . . . . . 7  |-  ( Y 
C_  A  ->  ( Y  i^i  X )  C_  A )
75, 6syl 16 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Y  i^i  X
)  C_  A )
8 simp23 993 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  Z  C_  A )
9 pmod.a . . . . . . 7  |-  A  =  ( Atoms `  K )
10 pmod.p . . . . . . 7  |-  .+  =  ( + P `  K
)
119, 10paddcom 30683 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  i^i  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  i^i  X
)  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
124, 7, 8, 11syl3anc 1185 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Y  i^i  X )  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
132, 12syl5eq 2482 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( Z  .+  ( Y  i^i  X ) ) )
14 simp21 991 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  ->  X  e.  S )
158, 5, 143jca 1135 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Z  C_  A  /\  Y  C_  A  /\  X  e.  S )
)
16 pmod.s . . . . . . 7  |-  S  =  ( PSubSp `  K )
179, 16, 10pmod1i 30718 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  e.  S ) )  -> 
( Z  C_  X  ->  ( ( Z  .+  Y )  i^i  X
)  =  ( Z 
.+  ( Y  i^i  X ) ) ) )
18173impia 1151 . . . . 5  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  e.  S )  /\  Z  C_  X )  ->  (
( Z  .+  Y
)  i^i  X )  =  ( Z  .+  ( Y  i^i  X ) ) )
1915, 18syld3an2 1232 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Z  .+  Y )  i^i  X
)  =  ( Z 
.+  ( Y  i^i  X ) ) )
209, 10paddcom 30683 . . . . . 6  |-  ( ( K  e.  Lat  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  =  ( Y  .+  Z
) )
214, 8, 5, 20syl3anc 1185 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( Z  .+  Y
)  =  ( Y 
.+  Z ) )
2221ineq1d 3543 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( Z  .+  Y )  i^i  X
)  =  ( ( Y  .+  Z )  i^i  X ) )
2313, 19, 223eqtr2d 2476 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( ( Y 
.+  Z )  i^i 
X ) )
24 incom 3535 . . 3  |-  ( ( Y  .+  Z )  i^i  X )  =  ( X  i^i  ( Y  .+  Z ) )
2523, 24syl6eq 2486 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A )  /\  Z  C_  X )  -> 
( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y  .+  Z ) ) )
26253expia 1156 1  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( Z  C_  X  ->  ( ( X  i^i  Y )  .+  Z )  =  ( X  i^i  ( Y 
.+  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322   ` cfv 5457  (class class class)co 6084   Latclat 14479   Atomscatm 30134   HLchlt 30221   PSubSpcpsubsp 30366   + Pcpadd 30665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-join 14438  df-lat 14480  df-covers 30137  df-ats 30138  df-atl 30169  df-cvlat 30193  df-hlat 30222  df-psubsp 30373  df-padd 30666
  Copyright terms: Public domain W3C validator