Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodN Unicode version

Theorem pmodN 30039
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a  |-  A  =  ( Atoms `  K )
pmod.s  |-  S  =  ( PSubSp `  K )
pmod.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmodN  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( X  i^i  ( Y  .+  ( X  i^i  Z ) ) )  =  ( ( X  i^i  Y ) 
.+  ( X  i^i  Z ) ) )

Proof of Theorem pmodN
StepHypRef Expression
1 incom 3361 . 2  |-  ( X  i^i  ( ( X  i^i  Z )  .+  Y ) )  =  ( ( ( X  i^i  Z )  .+  Y )  i^i  X
)
2 hllat 29553 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
32adantr 451 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  Lat )
4 simpr2 962 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Y  C_  A
)
5 inss2 3390 . . . . 5  |-  ( X  i^i  Z )  C_  Z
6 simpr3 963 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A
)
75, 6syl5ss 3190 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( X  i^i  Z )  C_  A )
8 pmod.a . . . . 5  |-  A  =  ( Atoms `  K )
9 pmod.p . . . . 5  |-  .+  =  ( + P `  K
)
108, 9paddcom 30002 . . . 4  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  ( X  i^i  Z )  C_  A )  ->  ( Y  .+  ( X  i^i  Z ) )  =  ( ( X  i^i  Z
)  .+  Y )
)
113, 4, 7, 10syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( Y  .+  ( X  i^i  Z ) )  =  ( ( X  i^i  Z ) 
.+  Y ) )
1211ineq2d 3370 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( X  i^i  ( Y  .+  ( X  i^i  Z ) ) )  =  ( X  i^i  ( ( X  i^i  Z )  .+  Y ) ) )
13 incom 3361 . . . 4  |-  ( X  i^i  Y )  =  ( Y  i^i  X
)
1413oveq2i 5869 . . 3  |-  ( ( X  i^i  Z ) 
.+  ( X  i^i  Y ) )  =  ( ( X  i^i  Z
)  .+  ( Y  i^i  X ) )
15 inss2 3390 . . . . 5  |-  ( X  i^i  Y )  C_  Y
1615, 4syl5ss 3190 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( X  i^i  Y )  C_  A )
178, 9paddcom 30002 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  i^i  Y ) 
C_  A  /\  ( X  i^i  Z )  C_  A )  ->  (
( X  i^i  Y
)  .+  ( X  i^i  Z ) )  =  ( ( X  i^i  Z )  .+  ( X  i^i  Y ) ) )
183, 16, 7, 17syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( ( X  i^i  Y )  .+  ( X  i^i  Z ) )  =  ( ( X  i^i  Z ) 
.+  ( X  i^i  Y ) ) )
19 simpr1 961 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  e.  S
)
207, 4, 193jca 1132 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( ( X  i^i  Z )  C_  A  /\  Y  C_  A  /\  X  e.  S
) )
21 inss1 3389 . . . . 5  |-  ( X  i^i  Z )  C_  X
22 pmod.s . . . . . 6  |-  S  =  ( PSubSp `  K )
238, 22, 9pmod1i 30037 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( X  i^i  Z )  C_  A  /\  Y  C_  A  /\  X  e.  S ) )  -> 
( ( X  i^i  Z )  C_  X  ->  ( ( ( X  i^i  Z )  .+  Y )  i^i  X )  =  ( ( X  i^i  Z )  .+  ( Y  i^i  X ) ) ) )
2421, 23mpi 16 . . . 4  |-  ( ( K  e.  HL  /\  ( ( X  i^i  Z )  C_  A  /\  Y  C_  A  /\  X  e.  S ) )  -> 
( ( ( X  i^i  Z )  .+  Y )  i^i  X
)  =  ( ( X  i^i  Z ) 
.+  ( Y  i^i  X ) ) )
2520, 24syldan 456 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( ( ( X  i^i  Z ) 
.+  Y )  i^i 
X )  =  ( ( X  i^i  Z
)  .+  ( Y  i^i  X ) ) )
2614, 18, 253eqtr4a 2341 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( ( X  i^i  Y )  .+  ( X  i^i  Z ) )  =  ( ( ( X  i^i  Z
)  .+  Y )  i^i  X ) )
271, 12, 263eqtr4a 2341 1  |-  ( ( K  e.  HL  /\  ( X  e.  S  /\  Y  C_  A  /\  Z  C_  A ) )  ->  ( X  i^i  ( Y  .+  ( X  i^i  Z ) ) )  =  ( ( X  i^i  Y ) 
.+  ( X  i^i  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Latclat 14151   Atomscatm 29453   HLchlt 29540   PSubSpcpsubsp 29685   + Pcpadd 29984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-join 14110  df-lat 14152  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-padd 29985
  Copyright terms: Public domain W3C validator