Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Unicode version

Theorem pmodlem2 29962
Description: Lemma for pmod1i 29963. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l  |-  .<_  =  ( le `  K )
pmodlem.j  |-  .\/  =  ( join `  K )
pmodlem.a  |-  A  =  ( Atoms `  K )
pmodlem.s  |-  S  =  ( PSubSp `  K )
pmodlem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmodlem2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )

Proof of Theorem pmodlem2
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  =  (/) )
21oveq1d 6036 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  (
(/)  .+  Y ) )
3 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  K  e.  HL )
4 simpl22 1036 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  Y  C_  A
)
5 pmodlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 pmodlem.p . . . . . . 7  |-  .+  =  ( + P `  K
)
75, 6padd02 29927 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( (/)  .+  Y )  =  Y )
83, 4, 7syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( (/)  .+  Y
)  =  Y )
92, 8eqtrd 2420 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  Y )
109ineq1d 3485 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( Y  i^i  Z ) )
11 ssinss1 3513 . . . . 5  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
124, 11syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
13 simpl21 1035 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  C_  A
)
145, 6sspadd2 29931 . . . 4  |-  ( ( K  e.  HL  /\  ( Y  i^i  Z ) 
C_  A  /\  X  C_  A )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
153, 12, 13, 14syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
1610, 15eqsstrd 3326 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
17 oveq2 6029 . . . . 5  |-  ( Y  =  (/)  ->  ( X 
.+  Y )  =  ( X  .+  (/) ) )
18 simp1 957 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  K  e.  HL )
19 simp21 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  X  C_  A )
205, 6padd01 29926 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  .+  (/) )  =  X )
2118, 19, 20syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  ( X  .+  (/) )  =  X )
2217, 21sylan9eqr 2442 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  .+  Y )  =  X )
2322ineq1d 3485 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( X  i^i  Z ) )
24 inss1 3505 . . . 4  |-  ( X  i^i  Z )  C_  X
25 simpl1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  K  e.  HL )
26 simpl21 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  A
)
27 simpl22 1036 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  Y  C_  A
)
2827, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
295, 6sspadd1 29930 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3025, 26, 28, 29syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3124, 30syl5ss 3303 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
3223, 31eqsstrd 3326 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
33 elin 3474 . . . 4  |-  ( p  e.  ( ( X 
.+  Y )  i^i 
Z )  <->  ( p  e.  ( X  .+  Y
)  /\  p  e.  Z ) )
34 simpl1 960 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  HL )
35 hllat 29479 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  Lat )
37 simpl21 1035 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  X  C_  A )
38 simpl22 1036 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  Y  C_  A )
39 simprl 733 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( X  =/=  (/)  /\  Y  =/=  (/) ) )
40 pmodlem.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
41 pmodlem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
4240, 41, 5, 6elpaddn0 29915 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
4336, 37, 38, 39, 42syl31anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
44 simpl1 960 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  K  e.  HL )
45 simpl21 1035 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  A )
46 simpl22 1036 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Y  C_  A )
47 simpl23 1037 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Z  e.  S )
48 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  Z )
49 simpr1 963 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  Z )
50 simpr2l 1016 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
q  e.  X )
51 simpr2r 1017 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
r  e.  Y )
52 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  .<_  ( q  .\/  r ) )
53 pmodlem.s . . . . . . . . . . . . . . 15  |-  S  =  ( PSubSp `  K )
5440, 41, 5, 53, 6pmodlem1 29961 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
5544, 45, 46, 47, 48, 49, 50, 51, 52, 54syl333anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) )
56553exp2 1171 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
p  e.  Z  -> 
( ( q  e.  X  /\  r  e.  Y )  ->  (
p  .<_  ( q  .\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
5756imp 419 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
q  e.  X  /\  r  e.  Y )  ->  ( p  .<_  ( q 
.\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) ) ) )
5857rexlimdvv 2780 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
5958adantld 454 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6059adantrl 697 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( ( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6143, 60sylbid 207 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6261exp32 589 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  Z  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
6362com34 79 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  ( X 
.+  Y )  -> 
( p  e.  Z  ->  p  e.  ( X 
.+  ( Y  i^i  Z ) ) ) ) ) )
6463imp4b 574 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( p  e.  ( X  .+  Y )  /\  p  e.  Z )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6533, 64syl5bi 209 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( p  e.  ( ( X  .+  Y )  i^i  Z
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6665ssrdv 3298 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
6716, 32, 66pm2.61da2ne 2630 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651    i^i cin 3263    C_ wss 3264   (/)c0 3572   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   lecple 13464   joincjn 14329   Latclat 14402   Atomscatm 29379   HLchlt 29466   PSubSpcpsubsp 29611   + Pcpadd 29910
This theorem is referenced by:  pmod1i  29963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-join 14361  df-lat 14403  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-psubsp 29618  df-padd 29911
  Copyright terms: Public domain W3C validator