Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Unicode version

Theorem pmodlem2 30329
Description: Lemma for pmod1i 30330. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l  |-  .<_  =  ( le `  K )
pmodlem.j  |-  .\/  =  ( join `  K )
pmodlem.a  |-  A  =  ( Atoms `  K )
pmodlem.s  |-  S  =  ( PSubSp `  K )
pmodlem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
pmodlem2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )

Proof of Theorem pmodlem2
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  =  (/) )
21oveq1d 6055 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  (
(/)  .+  Y ) )
3 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  K  e.  HL )
4 simpl22 1036 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  Y  C_  A
)
5 pmodlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 pmodlem.p . . . . . . 7  |-  .+  =  ( + P `  K
)
75, 6padd02 30294 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( (/)  .+  Y )  =  Y )
83, 4, 7syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( (/)  .+  Y
)  =  Y )
92, 8eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  Y )
109ineq1d 3501 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( Y  i^i  Z ) )
11 ssinss1 3529 . . . . 5  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
124, 11syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
13 simpl21 1035 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  C_  A
)
145, 6sspadd2 30298 . . . 4  |-  ( ( K  e.  HL  /\  ( Y  i^i  Z ) 
C_  A  /\  X  C_  A )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
153, 12, 13, 14syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
1610, 15eqsstrd 3342 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
17 oveq2 6048 . . . . 5  |-  ( Y  =  (/)  ->  ( X 
.+  Y )  =  ( X  .+  (/) ) )
18 simp1 957 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  K  e.  HL )
19 simp21 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  X  C_  A )
205, 6padd01 30293 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  .+  (/) )  =  X )
2118, 19, 20syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  ( X  .+  (/) )  =  X )
2217, 21sylan9eqr 2458 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  .+  Y )  =  X )
2322ineq1d 3501 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( X  i^i  Z ) )
24 inss1 3521 . . . 4  |-  ( X  i^i  Z )  C_  X
25 simpl1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  K  e.  HL )
26 simpl21 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  A
)
27 simpl22 1036 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  Y  C_  A
)
2827, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
295, 6sspadd1 30297 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3025, 26, 28, 29syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3124, 30syl5ss 3319 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
3223, 31eqsstrd 3342 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
33 elin 3490 . . . 4  |-  ( p  e.  ( ( X 
.+  Y )  i^i 
Z )  <->  ( p  e.  ( X  .+  Y
)  /\  p  e.  Z ) )
34 simpl1 960 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  HL )
35 hllat 29846 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  Lat )
37 simpl21 1035 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  X  C_  A )
38 simpl22 1036 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  Y  C_  A )
39 simprl 733 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( X  =/=  (/)  /\  Y  =/=  (/) ) )
40 pmodlem.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
41 pmodlem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
4240, 41, 5, 6elpaddn0 30282 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
4336, 37, 38, 39, 42syl31anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
44 simpl1 960 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  K  e.  HL )
45 simpl21 1035 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  A )
46 simpl22 1036 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Y  C_  A )
47 simpl23 1037 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Z  e.  S )
48 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  Z )
49 simpr1 963 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  Z )
50 simpr2l 1016 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
q  e.  X )
51 simpr2r 1017 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
r  e.  Y )
52 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  .<_  ( q  .\/  r ) )
53 pmodlem.s . . . . . . . . . . . . . . 15  |-  S  =  ( PSubSp `  K )
5440, 41, 5, 53, 6pmodlem1 30328 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
5544, 45, 46, 47, 48, 49, 50, 51, 52, 54syl333anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) )
56553exp2 1171 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
p  e.  Z  -> 
( ( q  e.  X  /\  r  e.  Y )  ->  (
p  .<_  ( q  .\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
5756imp 419 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
q  e.  X  /\  r  e.  Y )  ->  ( p  .<_  ( q 
.\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) ) ) )
5857rexlimdvv 2796 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
5958adantld 454 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6059adantrl 697 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( ( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6143, 60sylbid 207 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6261exp32 589 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  Z  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
6362com34 79 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  ( X 
.+  Y )  -> 
( p  e.  Z  ->  p  e.  ( X 
.+  ( Y  i^i  Z ) ) ) ) ) )
6463imp4b 574 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( p  e.  ( X  .+  Y )  /\  p  e.  Z )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6533, 64syl5bi 209 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( p  e.  ( ( X  .+  Y )  i^i  Z
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6665ssrdv 3314 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
6716, 32, 66pm2.61da2ne 2646 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667    i^i cin 3279    C_ wss 3280   (/)c0 3588   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   Latclat 14429   Atomscatm 29746   HLchlt 29833   PSubSpcpsubsp 29978   + Pcpadd 30277
This theorem is referenced by:  pmod1i  30330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-join 14388  df-lat 14430  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-padd 30278
  Copyright terms: Public domain W3C validator