MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Unicode version

Theorem pmresg 6795
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 3460 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  -.  ( A  ^pm  C )  =  (/) )
2 fnpm 6780 . . . . . . 7  |-  ^pm  Fn  ( _V  X.  _V )
3 fndm 5343 . . . . . . 7  |-  (  ^pm  Fn  ( _V  X.  _V )  ->  dom  ^pm  =  ( _V  X.  _V )
)
42, 3ax-mp 8 . . . . . 6  |-  dom  ^pm  =  ( _V  X.  _V )
54ndmov 6004 . . . . 5  |-  ( -.  ( A  e.  _V  /\  C  e.  _V )  ->  ( A  ^pm  C
)  =  (/) )
61, 5nsyl2 119 . . . 4  |-  ( F  e.  ( A  ^pm  C )  ->  ( A  e.  _V  /\  C  e. 
_V ) )
76simpld 445 . . 3  |-  ( F  e.  ( A  ^pm  C )  ->  A  e.  _V )
87adantl 452 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  A  e.  _V )
9 simpl 443 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  B  e.  V )
10 elpmi 6789 . . . . . 6  |-  ( F  e.  ( A  ^pm  C )  ->  ( F : dom  F --> A  /\  dom  F  C_  C )
)
1110simpld 445 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  F : dom  F --> A )
1211adantl 452 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  F : dom  F --> A )
13 inss1 3389 . . . 4  |-  ( dom 
F  i^i  B )  C_ 
dom  F
14 fssres 5408 . . . 4  |-  ( ( F : dom  F --> A  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> A )
1512, 13, 14sylancl 643 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> A )
16 ffun 5391 . . . . 5  |-  ( F : dom  F --> A  ->  Fun  F )
17 resres 4968 . . . . . 6  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
18 funrel 5272 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
19 resdm 4993 . . . . . . 7  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
20 reseq1 4949 . . . . . . 7  |-  ( ( F  |`  dom  F )  =  F  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
2118, 19, 203syl 18 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  B )
)
2217, 21syl5eqr 2329 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B )
)
2312, 16, 223syl 18 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
2423feq1d 5379 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( ( F  |`  ( dom  F  i^i  B
) ) : ( dom  F  i^i  B
) --> A  <->  ( F  |`  B ) : ( dom  F  i^i  B
) --> A ) )
2515, 24mpbid 201 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B ) : ( dom  F  i^i  B ) --> A )
26 inss2 3390 . . 3  |-  ( dom 
F  i^i  B )  C_  B
27 elpm2r 6788 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( ( F  |`  B ) : ( dom  F  i^i  B
) --> A  /\  ( dom  F  i^i  B ) 
C_  B ) )  ->  ( F  |`  B )  e.  ( A  ^pm  B )
)
2826, 27mpanr2 665 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( F  |`  B ) : ( dom  F  i^i  B
) --> A )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
298, 9, 25, 28syl21anc 1181 1  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455    X. cxp 4687   dom cdm 4689    |` cres 4691   Rel wrel 4694   Fun wfun 5249    Fn wfn 5250   -->wf 5251  (class class class)co 5858    ^pm cpm 6773
This theorem is referenced by:  lmres  17028  mbfres  18999  dvnres  19280  cpnres  19286  caures  26476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-pm 6775
  Copyright terms: Public domain W3C validator