MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmss12g Unicode version

Theorem pmss12g 6810
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )

Proof of Theorem pmss12g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 xpss12 4808 . . . . . . 7  |-  ( ( B  C_  D  /\  A  C_  C )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
21ancoms 439 . . . . . 6  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
3 sstr 3200 . . . . . . 7  |-  ( ( f  C_  ( B  X.  A )  /\  ( B  X.  A )  C_  ( D  X.  C
) )  ->  f  C_  ( D  X.  C
) )
43expcom 424 . . . . . 6  |-  ( ( B  X.  A ) 
C_  ( D  X.  C )  ->  (
f  C_  ( B  X.  A )  ->  f  C_  ( D  X.  C
) ) )
52, 4syl 15 . . . . 5  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( f  C_  ( B  X.  A )  -> 
f  C_  ( D  X.  C ) ) )
65anim2d 548 . . . 4  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
76adantr 451 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
8 ssexg 4176 . . . . 5  |-  ( ( A  C_  C  /\  C  e.  V )  ->  A  e.  _V )
9 ssexg 4176 . . . . 5  |-  ( ( B  C_  D  /\  D  e.  W )  ->  B  e.  _V )
10 elpmg 6802 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
118, 9, 10syl2an 463 . . . 4  |-  ( ( ( A  C_  C  /\  C  e.  V
)  /\  ( B  C_  D  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
1211an4s 799 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
13 elpmg 6802 . . . 4  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
1413adantl 452 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
157, 12, 143imtr4d 259 . 2  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  ->  f  e.  ( C 
^pm  D ) ) )
1615ssrdv 3198 1  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   _Vcvv 2801    C_ wss 3165    X. cxp 4703   Fun wfun 5265  (class class class)co 5874    ^pm cpm 6789
This theorem is referenced by:  lmres  17044  dvnadd  19294  caures  26579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-pm 6791
  Copyright terms: Public domain W3C validator