Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrfcnv Unicode version

Theorem pmtrfcnv 27405
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfcnv  |-  ( F  e.  R  ->  `' F  =  F )

Proof of Theorem pmtrfcnv
StepHypRef Expression
1 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . . 7  |-  R  =  ran  T
3 eqid 2283 . . . . . . 7  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 27400 . . . . . 6  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
54simpld 445 . . . . 5  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
61pmtrf 27397 . . . . 5  |-  ( ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
75, 6syl 15 . . . 4  |-  ( F  e.  R  ->  ( T `  dom  ( F 
\  _I  ) ) : D --> D )
84simprd 449 . . . . 5  |-  ( F  e.  R  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
98feq1d 5379 . . . 4  |-  ( F  e.  R  ->  ( F : D --> D  <->  ( T `  dom  ( F  \  _I  ) ) : D --> D ) )
107, 9mpbird 223 . . 3  |-  ( F  e.  R  ->  F : D --> D )
111, 2pmtrfinv 27402 . . 3  |-  ( F  e.  R  ->  ( F  o.  F )  =  (  _I  |`  D ) )
12 fcof1o 5803 . . 3  |-  ( ( ( F : D --> D  /\  F : D --> D )  /\  (
( F  o.  F
)  =  (  _I  |`  D )  /\  ( F  o.  F )  =  (  _I  |`  D ) ) )  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1310, 10, 11, 11, 12syl22anc 1183 . 2  |-  ( F  e.  R  ->  ( F : D -1-1-onto-> D  /\  `' F  =  F ) )
1413simprd 449 1  |-  ( F  e.  R  ->  `' F  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    C_ wss 3152   class class class wbr 4023    _I cid 4304   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255   2oc2o 6473    ~~ cen 6860  pmTrspcpmtr 27384
This theorem is referenced by:  symgtrinv  27413  psgnunilem1  27416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-2o 6480  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pmtr 27385
  Copyright terms: Public domain W3C validator