Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrffv Unicode version

Theorem pmtrffv 27504
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
pmtrfrn.p  |-  P  =  dom  ( F  \  _I  )
Assertion
Ref Expression
pmtrffv  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )

Proof of Theorem pmtrffv
StepHypRef Expression
1 pmtrrn.t . . . . . 6  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . 6  |-  R  =  ran  T
3 pmtrfrn.p . . . . . 6  |-  P  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 27503 . . . . 5  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )
54simprd 449 . . . 4  |-  ( F  e.  R  ->  F  =  ( T `  P ) )
65fveq1d 5543 . . 3  |-  ( F  e.  R  ->  ( F `  Z )  =  ( ( T `
 P ) `  Z ) )
76adantr 451 . 2  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  ( ( T `  P ) `
 Z ) )
84simpld 445 . . 3  |-  ( F  e.  R  ->  ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o ) )
91pmtrfv 27498 . . 3  |-  ( ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  Z  e.  D )  ->  ( ( T `  P ) `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
108, 9sylan 457 . 2  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( ( T `  P ) `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
117, 10eqtrd 2328 1  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    C_ wss 3165   ifcif 3578   {csn 3653   U.cuni 3843   class class class wbr 4039    _I cid 4320   dom cdm 4705   ran crn 4706   ` cfv 5271   2oc2o 6489    ~~ cen 6876  pmTrspcpmtr 27487
This theorem is referenced by:  pmtrfinv  27505  psgnunilem1  27519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-fin 6883  df-pmtr 27488
  Copyright terms: Public domain W3C validator