Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrffv Structured version   Unicode version

Theorem pmtrffv 27380
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
pmtrfrn.p  |-  P  =  dom  ( F  \  _I  )
Assertion
Ref Expression
pmtrffv  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )

Proof of Theorem pmtrffv
StepHypRef Expression
1 pmtrrn.t . . . . . 6  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . 6  |-  R  =  ran  T
3 pmtrfrn.p . . . . . 6  |-  P  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 27379 . . . . 5  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )
54simprd 451 . . . 4  |-  ( F  e.  R  ->  F  =  ( T `  P ) )
65fveq1d 5732 . . 3  |-  ( F  e.  R  ->  ( F `  Z )  =  ( ( T `
 P ) `  Z ) )
76adantr 453 . 2  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  ( ( T `  P ) `
 Z ) )
84simpld 447 . . 3  |-  ( F  e.  R  ->  ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o ) )
91pmtrfv 27374 . . 3  |-  ( ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  Z  e.  D )  ->  ( ( T `  P ) `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
108, 9sylan 459 . 2  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( ( T `  P ) `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
117, 10eqtrd 2470 1  |-  ( ( F  e.  R  /\  Z  e.  D )  ->  ( F `  Z
)  =  if ( Z  e.  P ,  U. ( P  \  { Z } ) ,  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ifcif 3741   {csn 3816   U.cuni 4017   class class class wbr 4214    _I cid 4495   dom cdm 4880   ran crn 4881   ` cfv 5456   2oc2o 6720    ~~ cen 7108  pmTrspcpmtr 27363
This theorem is referenced by:  pmtrfinv  27381  psgnunilem1  27395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-1o 6726  df-2o 6727  df-er 6907  df-en 7112  df-fin 7115  df-pmtr 27364
  Copyright terms: Public domain W3C validator